SKP Engineering College Tiruvannamalai-606611

A Course Material

on

Transform and Partial Differential Equations

By

K. Srinivasan
S. Dhanasekar
K. Suresh
M. Sathiyamoorthy

Assistant Professor
Mathematics Department

Quality Certificate

This is to Certify that the Electronic Study Material

Subject Code: MA6351
Subject Name: Transforms and Partial Differential Equations
Year/Sem: II / III
Being prepared by us and it meets the knowledge requirement of the University curriculum.

This is to certify that the course material being prepared by Mr. K. Srinivasan , Mr. S.Dhanasekar, Mr. K. Suresh and Mr. M. Sathiyamoorthy is of the adequate quality. They have referred more than five books and one among them is from abroad author.

Signature of HD
Name: S. Gokulakrishnan
Seal:

Signature of the Principal
Name: Dr.V.Subramania Bharathi
Seal:

MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

SYLLABUS

OBJECTIVES:

- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations - Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II

FOURIER SERIES

Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier series - Parseval's identity Harmonic analysis.

UNIT III
 APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

UNIT IV

FOURIER TRANSFORMS
Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

UNIT V Z-TRANSFORMS AND DIFFERENCE EQUATIONS
Z- Transforms - Elementary properties - Inverse Z - transform (using partial fraction and residues) - Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform.

OUTCOMES:

- The understanding of the mathematical principles on transforms and partial differentialequations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:

1. Veerarajan T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., New Delhi, Second reprint, 2012.
2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.
3. Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II \& III, S.Viswanathan Publishers Pvt Ltd. 1998.

REFERENCES:

1. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd, 2007.
2. Ramana. B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8 th Edition, Wiley India, 2007.
5. Ray Wylie C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.
6. Datta K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013.

CONTENTS

S.No	Particulars	Page
1	Unit - I	6
2	Unit - II	26
3	Unit - III	46
4	Unit - IV	69
5	Unit - V	83

UNIT I
PARTIAL DIFFERENTIAL EQUATIONS

PART - A

Problem 1 Form the partial differential equation by eliminating a and b from $z=\left(x^{2}+a^{2}\right)\left(y^{2}+b^{2}\right) .[$ CO 1-H2]
Solution:

$$
\begin{equation*}
z=\left(x^{2}+a^{2}\right)\left(y^{2}+b^{2}\right) \tag{1}
\end{equation*}
$$

Differentiating (1) partially w.r. $\mathrm{t} x$ and y we get

$$
\begin{align*}
& p=\frac{\partial z}{\partial x}=\left(y^{2}+b^{2}\right) 2 x \tag{2}\\
& q=\frac{\partial z}{\partial y}=\left(x^{2}+a^{2}\right) 2 y \tag{3}
\end{align*}
$$

Multiplying Eqn. (2) and Eqn (3) \Rightarrow

$$
p q=\left(x^{2}+a^{2}\right)\left(y^{2}+b^{2}\right) 4 x y
$$

$$
p q=4 x y z[\operatorname{using}(1)]
$$

Problem 2 Obtain the partial differential equation by eliminating arbitrary constants a and b from $(x-a)^{2}+(y-b)^{2}+z^{2}=1$. [CO 1-H2-Nov/Dec 2015]

Solution:

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}+z^{2}=1 \tag{1}
\end{equation*}
$$

Differentiating (1) partially w.r. x and y we get

$$
\begin{align*}
& 2(x-a)+2 z p=0 \\
& \Rightarrow x-a=-z p \tag{2}\\
& 2(y-b)+2 z q=0 \\
& \Rightarrow y-b=-z q \tag{3}
\end{align*}
$$

Substituting (2) \& (3) in (1) we get

$$
z^{2} p^{2}+z^{2} q^{2}+z^{2}=1
$$

$$
\text { i.e., } z^{2}\left(p^{2}+q^{2}+1\right)=1
$$

Problem 3 From the partial differential equation by eliminating f from $f\left(x^{2}+y^{2}+z^{2}, x+y+z\right)=0$. [CO 1-H2-May/Jun 2016]

Solution:

We know that if $f(\mathrm{u}, \mathrm{v})=0$

$$
\text { then } \mathrm{u}=f(\mathrm{v})
$$

$$
\begin{equation*}
\therefore x^{2}+y^{2}+z^{2}=f(x+y+z) \tag{1}
\end{equation*}
$$

Differentiating (1) partially w.r. t x and y We get

$$
\begin{aligned}
& 2 x+2 z p=f^{\prime}(x+y+z)(1+p) \\
& 2 y+2 z q=f^{\prime}(x+y+z)(1+q) \\
& \text { Divide }(2) \&(3) \\
& \frac{x+z p}{y+z q}=\frac{1+p}{1+q} \\
& x+q x+z p+z p q=y+p y+z q+z p q \\
& (z-y) p+(x-z) q=y-x
\end{aligned}
$$

Problem 4 Form the partial differential equation by eliminating f from $z=x^{2}+2 f\left(\frac{1}{y}+\log x\right) .[$ CO 1-H2]

Solution:

$$
\begin{equation*}
\text { Let } z=x^{2}+2 f\left(\frac{1}{y}+\log x\right) \tag{1}
\end{equation*}
$$

Differentiate (1) w.r. $\mathrm{t} x$ and y

$$
\begin{align*}
& \frac{\partial z}{\partial x}=p=2 x+2 f^{\prime}\left(\frac{1}{y}+\log x\right)\left(\frac{1}{x}\right) \tag{2}\\
& \frac{\partial z}{\partial y}=q=2 f^{\prime}\left(\frac{1}{y}+\log x\right)\left(\frac{-1}{y^{2}}\right) \tag{3}
\end{align*}
$$

Eliminating f^{\prime} from (2) \& (3)

$$
\begin{aligned}
& \therefore \frac{p-2 x}{q}=\frac{-1}{x}\left(y^{2}\right) \\
& p x-2 x^{2}=-q y^{2} \\
& p x+q y^{2}=2 x^{2}
\end{aligned}
$$

Problem 5 Obtain the partial differential equation by eliminating the arbitrary constants $\mathrm{a} \& \mathrm{~b}$ from $z=x y+y \sqrt{x^{2}-a^{2}}+b$. [CO 1-H2]

Solution:

$$
\begin{equation*}
z=x y+y \sqrt{x^{2}-a^{2}}+b \tag{1}
\end{equation*}
$$

Differentiating (1) partially w.r. $\mathrm{t} x$ and y

$$
\begin{aligned}
& p=\frac{\partial z}{\partial x}=y+y\left[\frac{1}{2 \sqrt{x^{2}-a^{2}}}\right][2 x] \\
& p=y+\frac{y x}{\sqrt{x^{2}-a^{2}}} \\
& \frac{p}{y}=1+\frac{x}{\sqrt{x^{2}-a^{2}}}
\end{aligned}
$$

$$
\begin{equation*}
\frac{p}{y}-1=\frac{x}{\sqrt{x^{2}-a^{2}}} \tag{2}
\end{equation*}
$$

$$
q=\frac{\partial z}{\partial y}=x+\sqrt{x^{2}-a^{2}}
$$

$$
\begin{equation*}
q-x=\sqrt{x^{2}-a^{2}} \tag{3}
\end{equation*}
$$

Multiplying (2) \& (3)

$$
\left(\frac{p}{y}-1\right)(q-x)=\frac{x}{\sqrt{x^{2}-a^{2}}} \sqrt{x^{2}-a^{2}}
$$

$$
\left(\frac{p}{y}-1\right)(q-x)=x
$$

$$
(p-y)(q-x)=x y
$$

$$
p q-x p-y q+x y=x y
$$

$$
p x+q y=p q
$$

Problem 6 Find the complete integral of $p+q=p q$ where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$. [CO1-H2]

Solution:

$$
\begin{equation*}
p+q=p q \tag{1}
\end{equation*}
$$

This is of the form $f(p, q)=0$
Let $z=a x+b y+c \quad$ - (2) be the complete solution of the partial differential equation.

$$
\begin{aligned}
& p=\frac{\partial z}{\partial x}=a \\
& q=\frac{\partial z}{\partial y}=b
\end{aligned}
$$

(1) reduces to $a+b=a b$

$$
\begin{aligned}
& a=b(a-1) \\
& b=\frac{a}{a-1} \\
& \therefore z=a x+\left(\frac{a}{a-1}\right) y+c
\end{aligned}
$$

Problem 7 Obtain the complete integral of $z=p x+q y+p^{2}+q^{2}$.
Solution:
[CO 1-H2-Nov/Dec 2015]

$$
\begin{equation*}
z=p x+q y+p^{2}+q^{2} \tag{1}
\end{equation*}
$$

This equation is of the form $z=p x+q y+f(p, q)$ (clairaut's type)
\therefore the complete integral is $z=a x+b y+a^{2}+b^{2}$.

Problem 8 Solve $p(1+q)=q z \cdot[\mathbf{C O} 1-\mathbf{L} 1]$
Solution:

$$
\begin{equation*}
p(1+q)=q z \tag{1}
\end{equation*}
$$

This equation is of the form $f(z, p, q)=0$
$z=f(x+a y)$ be the solution $x+a y=u \quad z=f(u)$ $p=\frac{d z}{d u} \quad q=\frac{a d z}{d u}$
(1) reduces to
$\frac{d z}{d u}\left(1+a \frac{d z}{d u}\right)=a \frac{d z}{d u} z$
$1+a \frac{d z}{d u}=a z$
$a \frac{d z}{d u}=a z-1$
$\frac{d z}{d u}=z-\frac{1}{a}$
$\frac{d z}{z-\frac{1}{a}}=d u$
Integrating $\log \left(z-\frac{1}{a}\right)=u+b$
i.e., $\log \left(z-\frac{1}{a}\right)=x+a y+b$ is the complete solution.

Problem 9 Solve the equation $p \tan x+q \tan y=\tan z$. [CO 1-L1]

Solution:

Given $p \tan x+q \tan y=\tan z$
This equation is of the form $P_{p}+Q_{q}=R$
When $\mathrm{P}=\tan \mathrm{x} \quad \mathrm{Q}=\tan \mathrm{y} \quad \mathrm{R}=\tan \mathrm{z}$
The subsidiary equations are

$$
\begin{gathered}
\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R} \\
\text { i.e., } \quad \frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\tan z}
\end{gathered}
$$

Considering the first two,

$$
\frac{d x}{\tan x}=\frac{d y}{\tan y}
$$

Sign,
$\int \cot x d x=\int \cot y d y$
$\log \sin x=\log \sin y+\log a$

$$
\log \left(\frac{\sin x}{\sin y}\right)=\log a
$$

$\frac{\sin x}{\sin y}=a$
i.e., $a=\frac{\sin x}{\sin y}$

Take,
$\frac{d y}{\tan y}=\frac{d z}{\tan z}$
$\int \frac{d y}{\tan y}=\int \frac{d z}{\tan z}$
$\int \cot y d y=\int \cot z d z$
$\log \sin y=\log \sin z+\log b$
$\log \left(\frac{\sin y}{\sin z}\right)=\log b$
$\therefore b=\frac{\sin y}{\sin z}$
Hence the general solution is $\phi\left(\frac{\sin x}{\sin y}, \frac{\sin y}{\sin z}\right)=0$

Problem 10 Solve $\left(D^{3}-3 D D^{\prime 2}+2 D^{\prime 3}\right) Z=0$. [CO1-L1]

Solution:

Substituting $\mathrm{D}=\mathrm{m}, \& \mathrm{D}^{1}=1$
The Auxiliary equation is $m^{3}-3 m+2=0$
$\mathrm{m}=1,1,-2$
Complimentary function is $\phi_{1}(y+x)+x \phi_{2}(y+x)+\phi_{3}(y-2 x)$
i.e., $Z=\phi_{1}(y+1)+x \phi_{2}(y+x)+\phi_{3}(y-2 x)$

Problem 11 Find the general solution of $4 \frac{\partial^{2} z}{\partial x^{2}}-12 \frac{\partial^{2} z}{\partial x \partial y}+9 \frac{\partial^{2} z}{\partial y^{2}}=0$. [CO 1-H2]
Solution:

$$
\left(4 D^{2}-12 D D^{1}+9 D^{12}\right) Z=0
$$

The auxiliary equation is $4 m^{2}-12 m+9=0$

$$
\begin{aligned}
& 4 m^{2}-6 m-6 m+9=0 \\
& 2 m(2 m-3)-3(2 m-3)=0
\end{aligned}
$$

$$
\begin{aligned}
(2 \mathrm{~m}-3)^{2} & =0 \\
\mathrm{~m} & =\frac{3}{2} \text { (twice) }
\end{aligned}
$$

C.F. $=\phi_{1}\left(y+\frac{3}{2} x\right)+x \phi_{2}\left(y+\frac{3}{2} x\right)$
\therefore the General solution is $\mathrm{Z}=\mathrm{C} . \mathrm{F} .+$ P.I

$$
z=\phi_{1}\left(y+\frac{3}{2} x\right)+x \phi_{2}\left(y+\frac{3}{2} x\right)
$$

Problem 12 Solve $\left(D^{3}+D D^{\prime 2}-D^{2} D^{\prime}-D^{\prime 3}\right) z=0$. [CO1-L1]

Solution:

The Auxiliary equation is

$$
\begin{aligned}
& m^{3}-m^{2}+m-1=0 \\
& m^{2}(m-1)+(m-1)=0 \\
& \left(m^{2}+1\right)(m-1)=0 \\
& \text { i.e. } m=1, i,-i
\end{aligned}
$$

\therefore The general solution is $Z=\phi_{1}(y+x)+\phi_{2}(y+i x)+\phi_{3}(y-i x)$

Problem 13 Find the particular integral of $\left(D^{3}+D^{2} D^{\prime}-D D^{\prime 2}-D^{\prime 3}\right) z=e^{x} \cos 2 y$.

Solution:

[CO 1-H2]

$$
\begin{aligned}
\text { P.I. } \quad & =\frac{1}{D^{3}+D^{2} D^{\prime}-D D^{\prime 2}-D^{\prime 3}} e^{x} \cos 2 y \\
& =e^{x} \frac{\cos 2 y}{(D+1)^{3}+(D+1)^{2} D^{\prime}-(D+1) D^{\prime 2}-D^{\prime 3}} \\
& =e^{x} \text { R.P. of } \frac{e^{2 i y}}{(D+1)^{3}+(D+1)^{2} D^{\prime}-(D+1) D^{\prime 2}-D^{\prime 3}} \\
& =e^{x} \text { R.P. of } \frac{e^{2 i y}}{1+2 i+4+8 i} \\
& =\frac{e^{x}}{5} \text { R.P. of } \frac{1-2 i}{(1+2 i)(1-2 i)}(\cos 2 y+i \sin 2 y) \\
& =\frac{1}{5} e^{x} \cdot \frac{1}{5}(\cos 2 y+2 \sin 2 y) \\
\text { P.I. } \quad & =\frac{e^{x}}{25}(\cos 2 y+2 \sin 2 y)
\end{aligned}
$$

Problem 14 Solve $\left(D^{2}-D D^{\prime}+D^{\prime}-1\right) z=0$. [CO1-L1]

Solution:

$$
\begin{aligned}
& \left(D^{2}-D D^{\prime}+D^{\prime}-1\right)=0 \\
& (D-1)\left(D-D^{\prime}+1\right)=0
\end{aligned}
$$

This is of the form
$\left(D-m_{1} D^{1}-\alpha_{1}\right)\left(D-m_{2} D^{1}-\alpha_{2}\right)=0$
$m_{1}=0, \alpha_{1}=1, m_{2}=1, \alpha_{2}=-1$
C.F. is $Z=e^{\alpha_{1} x} f_{1}\left(y+m_{1} x\right)+e^{\alpha_{2} x} f_{2}\left(y+m_{2} x\right)$
$Z=e^{x} f_{1}(y)+e^{-x} f_{2}(y+x)$

Problem 15 Solve $\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right) z=e^{2 x-y}$. [CO 1-H2-Apr/May 2014] Solution:

This is of the form
$\left(D-m_{1} D^{\prime}-C_{1}\right)\left(D-m_{2} D^{\prime}-C_{2}\right) \ldots .\left(D-m_{n} D^{\prime}-C_{n}\right) Z=0$
Hence $m_{1}=1 \quad c_{1}=1 \quad m_{2}=1 \quad c_{2}=1 c_{2}=2$
Hence the C.F. is $z=e^{x} \phi_{1}(y+x)+e^{2 x} \phi_{2}(y+x)$

$$
\begin{aligned}
\text { P.I. } & =\frac{e^{2 x-y}}{\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right)} \\
& =\frac{e^{2 x-y}}{(2+1-1)(2+1-2)} \\
& =\frac{1}{2} e^{2 x-y}
\end{aligned}
$$

Hence, the complete solution is $Z=e^{x} \phi_{1}(y+x)+e^{2 x} \phi_{2}(y+x)+\frac{1}{2} e^{2 x-y}$

PART - B

Problem 16

a. From the partial differential equation by eliminating f and ϕ from $z=f(y)+\phi(x+y+z)$. [CO 1-H2]

Solution:

$$
\begin{equation*}
z=f(y)+\phi(x+y+z) \tag{1}
\end{equation*}
$$

Differentiating partially with respect to x and y , we get

$$
\begin{align*}
& P=\phi^{\prime}(x+y+z)(1+p) \tag{2}\\
& q=f^{\prime}(y)+\phi^{\prime}(x+y+z)(1+q) \tag{3}\\
& r=\phi^{\prime}(x+y+z) \cdot r+\phi^{\prime \prime}(x+y+z)(1+p)^{2}-(4) \tag{4}\\
& s=\phi^{\prime}(x+y+z) \cdot s+\phi^{\prime \prime}(x+y+z)(1+p)(1+q) \tag{5}\\
& t=f^{\prime \prime}(y)+\phi^{\prime}(x+y+z) t+\phi^{\prime \prime}(x+y+z)(1+q)^{2} \tag{6}
\end{align*}
$$

From (4) $r\left\{1-\phi^{\prime}(x+y+z)\right\}=(1+p)^{2} \phi^{\prime \prime}(x+y+z)$
From (5) $s\left\{1-\phi^{\prime}(x+y+z)\right\}=(1+p)(1+q) \phi^{\prime \prime}(x+y+z)$
Dividing (7) \& (8) we get

$$
\begin{aligned}
& \frac{r}{s}=\frac{(1+p)}{(1+q)} \\
& (1+q) r=(1+p) s
\end{aligned}
$$

b. Solve $\left(D^{2}-2 D D^{\prime}\right) z=e^{2 x}+x^{3} y$. [CO 1-H2-Nov/Dec 2014]

Solution:

Auxiliary Equation is given by $m^{2}-2 m=0$
i.e., $m(m-2)=0$
$\mathrm{m}=0, \mathrm{~m}=2$
C.F. $=f_{1}(y)+f_{2}(y+2 x)$

$$
\begin{aligned}
P I_{1} & =\frac{1}{\left(D^{2}-2 D D^{\prime}\right)} e^{2 x} \\
& =\frac{e^{2 x}}{4}\left(\text { Replace } \mathrm{D} \text { by } 2 \text { and } \mathrm{D}^{\prime} \text { by } 0\right) \\
P I_{2} & =\frac{1}{\left(D^{2}-2 D D^{\prime}\right)} x^{3} y \\
& =\frac{1}{D^{2}}\left(1-\frac{2 D^{\prime}}{D}\right)^{-1} x^{3} y
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{D^{2}}\left(1+\frac{2 D^{\prime}}{D}+\ldots \ldots .\right) x^{3} y \\
& =\frac{1}{D^{2}}\left(x^{3} y+\frac{2 x^{3}}{D}\right) \\
& =\frac{x^{5}}{20} y+2 \cdot \frac{x^{6}}{4 \cdot 5 \cdot 6} \\
& =\frac{x^{5}}{20} y+\frac{x^{6}}{60}
\end{aligned}
$$

The complete solution is

$$
\begin{aligned}
& Z=C \cdot F \cdot+P I_{1}+P I_{2} \\
& Z=f_{1}(y)+f_{2}(y+2 x)+\frac{e^{2 x}}{4}+\frac{x^{5} y}{20}+\frac{x^{6}}{20}
\end{aligned}
$$

Problem 17

a. Find the complete integral of $p+q=x+y \cdot[\mathbf{C O} \mathbf{1 - H 2}]$

Solution:

The given equation does not contain z explicitly and is variable separable.
That is the equation can be rewritten as $\mathrm{p}-\mathrm{x}=\mathrm{y}-\mathrm{q}=\mathrm{a}$, say
$\therefore p=a+x$ and $q=y-a$
Now $\quad d z=p d x+q d y$

$$
\begin{equation*}
d z=(a+x) d x+(y-a) d y \tag{2}
\end{equation*}
$$

Integrating both sides with respect to he concerned variables, we get
$z=\frac{(a+x)^{2}}{2}+\frac{(y-a)^{2}}{2}+b$
when a and b are arbitrary constants.
b. Solve $y^{2} p-x y q=x(z-2 y)$ [CO 1-H2]

Solution:

This is a Lagrange's linear equation of the form $P p+Q q=R$
The subsidiary equations are

$$
\begin{aligned}
& \frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R} \\
& \frac{d x}{y^{2}}=\frac{d y}{-x y}=\frac{d z}{x(z-2 y)}
\end{aligned}
$$

Taking I \& II ratios

$$
\begin{aligned}
& \frac{d x}{y^{2}}=\frac{d y}{-x y} \\
& x d x=-y d y
\end{aligned}
$$

Integrating,

$$
\begin{aligned}
& \frac{x^{2}}{2}=\frac{-y^{2}}{2}+C \\
& x^{2}+y^{2}=2 c=c_{1}
\end{aligned}
$$

Taking II \& III ratios $\frac{d y}{-x y}=\frac{d z}{x(z-2 y)}$

$$
\begin{aligned}
& (Z-2 y) d y=-y d z \\
& y d z+z d y=2 y d y \\
& d(y z)=2 y d y
\end{aligned}
$$

Integrating,

$$
\begin{aligned}
& y z=y^{2}+c_{2} \\
& y z-y^{2}=c_{2}
\end{aligned}
$$

the solution is $\phi\left(x^{2}+y^{2}, y z-y^{2}\right)=0$

Problem 18

a. Find the singular integral of the partial differential equation $z=p x+q y+p^{2}-q^{2}$. [CO1-H2-Apr/May 2014]

Solution:

The given equation $z=p x+q y+p^{2}-q^{2}$ is a clairaut's type equation.
Hence the complete solution is $z=a x+b y+a^{2}-b^{2}$
To get singular Solution :
Differentiate (1) w.r.t. a and b

$$
\begin{align*}
& 0=\mathrm{x}+2 \mathrm{a} \tag{2}\\
& 0=\mathrm{y}-2 \mathrm{~b} \\
& \therefore a=\frac{-x}{2} \text { and } b=\frac{y}{2}
\end{align*}
$$

Substituting in (1),

$$
\begin{aligned}
& z=\frac{-x^{2}}{2}+\frac{y^{2}}{2}+\frac{x^{2}-y^{2}}{4} \\
& z=\frac{-2 x^{2}+2 y^{2}+x^{2}-y^{2}}{4}
\end{aligned}
$$

$4 z=y^{2}-x^{2}$ is the singular solution.
b. Solve $\left(D^{2}+4 D D^{\prime}-5 D^{\prime 2}\right) z=3 e^{2 x-y}+\sin (x-2 y)$. [CO 1-H2]

Solution:

The Auxiliary equation,

$$
\begin{aligned}
& m^{2}+4 m-5=0 \\
& m^{2}+5 m-m-5=0 \\
& m(m+5)-(m+5)=0 \\
&(m-1)(m+5)=0 \\
& \therefore \quad \text { C.F. }= f(y+x)+g(y-5 x) \\
& P I_{1} \quad= \frac{1}{D^{2}+4 D D^{\prime}-5 D^{\prime 2}} 3 e^{2 x-y} \\
&= \frac{3 e^{2 x-y}}{4-8-5} \\
&= \frac{3}{-9} e^{2 x-y} \\
&= \frac{-1}{3} e^{2 x-y} \\
& P I_{2}= \frac{1}{D^{2}+4 D D^{\prime}-5 D^{\prime 2}} \sin (x-2 y) \\
&= \frac{1}{-1+4(2)-5(-4)} \sin (x-2 y) \\
&= \frac{1}{-1+8+20} \sin (x-2 y) \\
&= \frac{1}{27} \sin (x-2 y) \\
& \therefore
\end{aligned}
$$

\therefore the complete solution is $Z=C F+P I_{1}+P I_{2}$
i.e. $Z=f(y+x)+g(y-5 x)-\frac{1}{3} e^{2 x-y}+\frac{1}{27} \sin (x-2 y)$

Problem 19 a. Find the general solution of $(3 z-4 y) p+(4 x-2 z) q=2 y-3 x$.

Solution:

[CO1-H2]
This is a Lagrange's linear equation of the form $P p+Q q=R$.
The subsidiary equations are $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$

$$
\begin{equation*}
\frac{d x}{3 z-4 y}=\frac{d y}{4 x-2 z}=\frac{d z}{2 y-3 x} \tag{1}
\end{equation*}
$$

Use Lagrangian multipliers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ we get each ratio is
$\frac{x d x+y d y+z d z}{3 x z-4 x y+4 x y-2 y z+2 y z-3 x z}=\frac{\frac{1}{2} d\left(x^{2}+y^{2}+z^{2}\right)}{0}$
Hence $d\left(x^{2}+y^{2}+z^{2}\right)=0$
Integrating both the sides,
$\therefore x^{2}+y^{2}+z^{2}=C_{1}$
using multipliers $2,3,4$ each of equation (1) is

$$
\begin{aligned}
& =\frac{2 d x+3 d y+4 d z}{6 z-8 y+12 x-6 z+8 y-12 x} \\
& =\frac{2 d x+3 d y+4 d z}{0}
\end{aligned}
$$

$\therefore 2 d x+3 d y+4 d z=0$
Hence $2 x+3 y+4 z=C_{2}$
\therefore the General solution is $\phi\left(x^{2}+y^{2}+z^{2}, 2 x+3 y+4 z\right)=0$
b. Solve $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}-3 D+3 D^{\prime}+2\right) z=\left(e^{3 x}+2 e^{-2 y}\right)^{2} \cdot[\mathbf{C O} 1-\mathbf{L 3}]$

Solution:

$$
\begin{aligned}
& \left(D^{2}-2 D D^{\prime}+D^{\prime 2}-3 D+3 D^{\prime}+2\right) z=\left[\left(D-D^{\prime}-2\right)\left(D-D^{\prime}-1\right)\right] z \\
& {\left[\left(D-D^{\prime}-2\right)\left(D-D^{\prime}-1\right)\right] z=e^{6 x}+4 e^{3 x-2 y}+4 e^{-4 y}} \\
& m_{1}=1, \alpha_{1}=2, m_{2}=1, \alpha_{2}=1 \\
& \therefore \text { C.F. }=e^{2 x} f(y+x)+e^{x} f(y+x) \\
& P I_{1} \quad=\frac{1}{\left(D-D^{\prime}-2\right)\left(D-D^{\prime}-1\right)} e^{6 x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(6-0-2)(6-0-1)} e^{6 x} \\
& =\frac{1}{20} e^{6 x} \\
P I_{2} & =\frac{1}{\left(D-D^{\prime}-2\right)\left(D-D^{\prime}-1\right)} 4 e^{3 x-2 y} \\
& =\frac{4}{(3+2-2)(3+2-1)} e^{3 x-2 y} \\
& =\frac{4}{3(4)} e^{3 x-2 y} \\
& =\frac{1}{3} e^{3 x-2 y} \\
P I_{3} & =\frac{1}{\left(D-D^{\prime}-2\right)\left(D-D^{\prime}-1\right)} 4 e^{-4 y} \\
& =\frac{4 e^{-4 y}}{(0+4-2)(0+4-1)} \\
& =\frac{4}{(2)(3)} e^{-4 y} \\
& =\frac{2}{3} e^{-4 y}
\end{aligned}
$$

\therefore the general solution
$Z=e^{2 x} f(y+x)+e^{x} f(y+x)+\frac{1}{20} e^{6 x}+\frac{1}{3} e^{3 x-2 y}+\frac{2}{3} e^{-4 y}$

Problem 20

a. Form the differential equation by eliminating the arbitrary function f and g in $z=f(x+y) g(x-y)$. [CO 1-H2]
Solution:

$$
z=f(x+y) g(x-y)
$$

Let $u=x+y \quad v=x-y$

$$
\begin{equation*}
Z=f(u) \cdot g(v) \tag{1}
\end{equation*}
$$

Differentiating partially with respect to x and y , we get

$$
\begin{align*}
& p=f(u) \cdot g^{\prime}(v)+f^{\prime}(u) \cdot g(v) \tag{2}\\
& q=f(u) g^{\prime}(v)(-1)+f^{\prime}(u) g(v) \tag{3}\\
& r=f(u) g^{\prime \prime}(v)+2 f^{\prime}(u) g^{\prime}(v)+f^{\prime \prime}(u) \cdot g(v) \tag{4}\\
& s=f(u) g^{\prime \prime}(v)(-1)+f^{\prime \prime}(u) \cdot g(v) \tag{5}\\
& t=f(u) g^{\prime \prime}(v)-2 f^{\prime}(u) g^{\prime}(v)+f^{\prime \prime}(u) g(v) \tag{6}
\end{align*}
$$

Subtracting (4) from (6), we get

$$
\begin{equation*}
r-t=4 f^{\prime}(u) \cdot g^{\prime}(v) \tag{7}
\end{equation*}
$$

From (2) \& (3), we get

$$
\begin{gathered}
p^{2}-q^{2}=4 f(u) \cdot g(v) \cdot f^{\prime}(u) \cdot g^{\prime}(v) \\
=\mathrm{Z}(\mathrm{r}-\mathrm{t}) \text { from (1) \& (7) } \\
\text { i.e., } z\left(\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}\right)=\left(\frac{\partial z}{\partial x}\right)^{2}-\left(\frac{\partial z}{\partial y}\right)^{2}
\end{gathered}
$$

b. Solve the equation $(p q-p-q)(z-p x-q y)=p q$. [CO1-H1]

Solution:

Rewriting the given equation as $Z=p x+q y+\frac{p q}{p q-p-q}-(1)$
we identify it as a clairaut's type equation. Hence its complete solution is
$Z=a x+b y+\frac{a b}{a b-a-b}$
The general solution of (1) is found out as usual from (2).
Let us now find the singular solution of (1).
Differentiating (2) partially with respect to a and then b , we get
$0=x+\frac{(a b-a-b) b-a b(b-1)}{(a b-a-b)^{2}}$
i.e., $0=x-\frac{b^{2}}{(a b-a-b)^{2}}$
and similarly
$0=y-\frac{a^{2}}{(a b-a-b)^{2}}$
From (3) \& (4), we get $\frac{a^{2}}{b^{2}}=\frac{y}{x}$ or $\frac{a}{\sqrt{y}}=\frac{b}{\sqrt{x}}=k$, say
$\therefore a=k \sqrt{y}$ and $b=k \sqrt{x}$
Using there values in (3) we get
$k^{2} x-\left(k^{2} \sqrt{x y}-k \sqrt{y}-k \sqrt{x}\right)^{2} x=0$
$k^{2} x=\left(k^{2} \sqrt{x y}-k \sqrt{y}-k \sqrt{x}\right) x$
i.e., $(k \sqrt{x y}-\sqrt{x}-\sqrt{y})=1$
$k=\frac{1+\sqrt{x}+\sqrt{y}}{\sqrt{x y}}$
Hence $a=\frac{1+\sqrt{x}+\sqrt{y}}{\sqrt{x}}$ and $b=\frac{1+\sqrt{x}+\sqrt{y}}{\sqrt{y}}$

Also

$$
\begin{aligned}
\frac{a b}{a b-a-b}=\frac{1}{1-\frac{1}{b}-\frac{1}{a}} & =\frac{1}{1-\frac{\sqrt{y}}{1+\sqrt{x}+\sqrt{y}}-\frac{\sqrt{x}}{1+\sqrt{x}+\sqrt{y}}} \\
& =1+\sqrt{x}+\sqrt{y}
\end{aligned}
$$

Using these values in (2), the singular solution of (1) is

$$
\begin{aligned}
& z=\sqrt{x}(1+\sqrt{x}+\sqrt{y})+\sqrt{y}(1+\sqrt{x}+\sqrt{y})+(1+\sqrt{x}+\sqrt{y}) \\
& z=(1+\sqrt{x}+\sqrt{y})^{2}
\end{aligned}
$$

Problem 21

a. Form the partial differential equation by eliminating f from $f\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0$. [CO 1-H2-Apr/May 2014]

Solution:

$f\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0$
Let $u=x^{2}+y^{2}+z^{2}$ and $\mathrm{v}=z^{2}-2 x y$ then
the given equation is $f(u, v)=0 \quad$-(1)
Differentiating (1) partially w.r.t. x and y respectively
we get $\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}=0$ and $\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}=0$
$\Rightarrow(2 x+2 z p) \frac{\partial f}{\partial u}+(2 z p-2 y) \frac{\partial f}{\partial v}=0$

$$
\begin{equation*}
(2 y+2 z q) \frac{\partial f}{\partial u}+(2 z q-2 \mathrm{x}) \frac{\partial f}{\partial v}=0 \tag{4}
\end{equation*}
$$

from (4) and (5)
we get $\left|\begin{array}{ll}x+z p & z p-y \\ y+z q & z q-x\end{array}\right|=0$

$$
\begin{aligned}
& (x+z p)(z q-x)=(y+z q)(z p-y) \\
& z q x-x^{2}+z^{2} p q-x z p=z p y-y^{2}+z^{2} p q-z q y \\
& -z p(x+y)+z q(x+y)=x^{2}-y^{2} \\
& -z p(x+y)+z q(x+y)=(x-y)(x+y) \\
& -z p+z q=x-y \\
& z p-z q=y-x \\
& z(p-q)=y-x
\end{aligned}
$$

b. Solve the equation $p\left(1-q^{2}\right)=q(1-z)$. [CO 1-H1]

Solution:

The given equation is of the from $f(z, p, q)=0$

$$
\begin{equation*}
P\left(1-q^{2}\right)=q(p-z) \tag{1}
\end{equation*}
$$

Let $z=f(x+a y)$ be the solution of (1)

$$
\text { If } x+a y=u \quad \text { then } \quad z=f(u)
$$

If

$$
p=\frac{d z}{d u} \quad \text { and } \quad q=\frac{a d z}{d u}
$$

(1) reduces as

$$
\frac{\partial z}{\partial u}\left[1-a^{2}\left(\frac{d z}{d u}\right)^{2}\right]=\frac{a d z}{d u}(1-z)
$$

i.e., $\frac{d z}{d u}\left[1-a^{2}\left(\frac{d z}{d u}\right)^{2}-a+a z\right]=0$

As z is not a constant, $\frac{d z}{d u} \neq 0$
$\therefore 1-a^{2}\left(\frac{d z}{d u}\right)^{2}-a+a z=0$
i.e., $a^{2}\left(\frac{d z}{d u}\right)^{2}=a z+1-a$
$a \frac{d z}{d u}=\sqrt{a z+1-a}$
solving (3), we get

$$
\begin{aligned}
& a \int \frac{d z}{\sqrt{a z+1-a}}=\int d u \\
& 2 \sqrt{a z+1-a}=u+b \\
& 2 \sqrt{a z+1-a}=x+a y+b \\
& 4(a z+1-a)=(x+a y+b)^{2}
\end{aligned}
$$

Problem 22

a. Solve the equation $p^{2}+q^{2}=z^{2}\left(x^{2}+y^{2}\right)$. [CO 1-H1]

Solution:

The given equation dues not belong to any of the standard types.
It can be rewritten as $\left(z^{-1} p\right)^{2}+\left(z^{-1} q\right)^{2}=x^{2}+y^{2} \quad$ (1)
As the Equation (1) contains $z^{-1} p$ and $z^{-1} q$ we make the substitution $Z=\log z$ $\mathrm{z}^{-1} \mathrm{p}=\mathrm{P}$ and $\mathrm{z}^{-1} q=Q$
Using there values in (1), it becomes

$$
\begin{equation*}
P^{2}+Q^{2}=x^{2}+y^{2} \tag{2}
\end{equation*}
$$

As Eq. (2) dues not contain Z explicitly, we rewrite it as

$$
P^{2}-x^{2}=y^{2}-Q^{2}=a^{2}, \text { say } \text { (3) }
$$

From (3)

$$
\begin{aligned}
& P^{2}=a^{2}+x^{2} \text { and } Q^{2}=y^{2}-a^{2} \\
& P=\sqrt{a^{2}+x^{2}} \text { and } Q=\sqrt{y^{2}-a^{2}} \\
& d z=P d x+Q d y \\
& d z=\sqrt{a^{2}+x^{2}} d x+\sqrt{y^{2}-a^{2}} d y
\end{aligned}
$$

Integrating, we get

$$
Z=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \sin h^{-1}\left(\frac{x}{a}\right)+\frac{y}{2} \sqrt{y^{2}-a^{2}}-\frac{a^{2}}{2} \cos h^{-1}\left(\frac{y}{a}\right)+b
$$

\therefore the complete solution of (1) is

$$
\log z=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \sin h^{-1}\left(\frac{x}{a}\right)+\frac{y}{a} \sqrt{y^{2}-a^{2}}-\frac{a^{2}}{2} \cos h^{-1}\left(\frac{y}{a}\right)+b
$$

where a and b are arbitrary constants.
Singular solution does not exist and the General solution is found out as usual.
b. Solve the equation $\left(D^{2}+D^{\prime 2}\right) z=\sin 2 x \sin 3 y+2 \sin ^{2}(x+y)$. [CO 1-H1]

Solution:

The auxiliary equation is $\mathrm{m}^{2}+1=0$

$$
\text { i.e., } m= \pm i
$$

\therefore C.F. $=f(y+i x)+g(y-i x)$

$$
\begin{aligned}
P I_{1} & =\frac{1}{D^{2}+D^{\prime 2}} \sin 2 x \sin 3 y \\
& =\frac{1}{D^{2}+D^{\prime 2}} \cdot \frac{1}{2}\{\cos (2 x-3 y)-\cos (2 x+3 y)\} \\
& =\frac{1}{2}\left[\frac{1}{-4-9} \cos (2 x-3 y)-\frac{1}{-4-9} \cos (2 x+3 y)\right] \\
& =\frac{-1}{13} \cdot \frac{1}{2}\{\cos (2 x-3 y)-\cos (2 x+3 y)\} \\
& =\frac{-1}{13} \sin 2 x \sin 3 y \\
P I_{2} & =\frac{1}{D^{2}+D^{\prime 2}} 2 \sin ^{2}(x+y)
\end{aligned}
$$

$$
=\frac{1}{D^{2}+D^{2^{2}}}\{1-\cos (2 x+2 y)\}
$$

$$
=\frac{1}{D^{2}+D^{\prime^{\prime 2}}}(1)-\frac{1}{D^{2}+D^{\prime^{2}}} \cos (2 x+2 y)
$$

$$
=\frac{1}{D^{2}+D^{\prime 2}} e^{0 x}-\frac{1}{-4-4} \cos (2 x+2 y)
$$

$$
=\frac{x^{2}}{2}+\frac{1}{8} \cos (2 x+2 y)
$$

The complete solution is $Z=C . F .+P I_{1}+P I_{2}$
i.e., $Z=f(y+i x)+g(y-i x)-\frac{1}{13} \sin 2 x \sin 3 y+\frac{x^{2}}{2}+\frac{1}{8} \cos (2 x+2 y)$

Problem 23

a. Solve $\sqrt{p}+\sqrt{q}=1$. [CO 1-H2-Apr/May 2015]

Solution:

This is of the form $f(p, q)=0$.
The complete integral is given by $z=a x+b y+c$ where

$$
\begin{align*}
& \sqrt{a}+\sqrt{b}=1 \\
& \sqrt{b}=1-\sqrt{a} \\
& b=(1-\sqrt{a})^{2} \tag{1}
\end{align*}
$$

\therefore The complete solution is $z=a x+(1-\sqrt{a})^{2} y+c$
Differentiating partially w.r.t. c we get $0=1$ (absurd)
\therefore There is no singular integral
Taking $c=f(a)$ where f is arbitrary,

$$
\begin{equation*}
z=a x+(1-\sqrt{a})^{2} y+f(a) \tag{2}
\end{equation*}
$$

Differentiating partially w.r.t a, we get

$$
\begin{equation*}
0=x+2(1-\sqrt{a})\left(\frac{-1}{2 \sqrt{a}}\right) y+f^{\prime}(a) \tag{3}
\end{equation*}
$$

Eliminating ' a ' between (2) \& (3) we get the general solution.
b. Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$. [CO 1-H2-Apr/May 2015]

Solution:

This is a Lagrange's linear equation of the form $P p+Q q=R$
The subsidiary equations are $\frac{d x}{x^{2}-y z}=\frac{d y}{y^{2}-z x}=\frac{d z}{z^{2}-x y}$

$$
\begin{align*}
& \frac{d x-d y}{\left(x^{2}-y z\right)-\left(y^{2}-z x\right)}=\frac{d y-d z}{y^{2}-z x-z^{2}+x y}=\frac{d x-d z}{x^{2}-y z-z^{2}+x y} \tag{1}\\
& \text { i.e., } \frac{d(x-y)}{\left(x^{2}-y^{2}\right)+z(x-y)}=\frac{d(y-z)}{y^{2}-z^{2}+x(y-z)}=\frac{d(x-z)}{x^{2}-z^{2}+y(1-z)}
\end{align*}
$$

i.e., $\frac{d(x-y)}{(x-y)(x+y+z)}=\frac{d(y-z)}{(y-z)(x+y+z)}=\frac{d(x-z)}{(x-z)(x+y+z)}$
i.e., $\frac{d(x-y)}{(x-y)}=\frac{d(y-z)}{y-z}=\frac{d(x-z)}{x-z}$

Taking the first two ratios, and integrating $\log (x-y)=\log (y-z)+\log a$
$\therefore \frac{x-y}{y-z}=a$
Similarly taking the last two ratios of (3) we get,
$\therefore \frac{y-z}{x-z}=b$
But $\frac{x-y}{y-z}$ and $\frac{y-z}{x-z}$ are not independent solutions for $\frac{x-y}{y-z}+1$ gives $\frac{x-z}{y-z}$ which is the reciprocal of the second solution.
Therefore solution given by (4) and (5) are not independent. Hence we have to search for another independent solution.
Using multipliers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in equation (1) each ratio is $=\frac{x d x+y d y+z d z}{x^{3}+y^{3}+z^{3}-3 x y z}$
Using multipliers $1,1,1$ each ratio is $=\frac{d x+d y+d z}{x^{2}+y^{2}+z^{2}-x y-y z-z x}$ $\frac{x d x+y d y+z d z}{x^{3}+y^{3}+z^{3}-3 x y z}=\frac{d x+d y+d z}{x^{2}+y^{2}+z^{2}-x y-y z-z x}$ $\frac{\frac{1}{2} d\left(x^{2}+y^{2}+z^{2}\right)}{(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)}=\frac{d(x+y+z)}{x^{2}+y^{2}+z^{2}-x y-y z-z x}$

Hence $\frac{1}{2} d\left(x^{2}+y^{2}+z^{2}\right)=(x+y+z) d(x+y+z)$
Integrating $\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)=\frac{(x+y+z)^{2}}{2}+k$
$\therefore \quad\left(x^{2}+y^{2}+z^{2}\right)=(x+y+z)^{2}+2 k$
$x^{2}+y^{2}+z^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x+2 k$
i.e., $x y+y z+z x=b$
\therefore the general solution is $\phi\left(x y+y z+z x, \frac{x-y}{y-z}\right)=0$

UNIT - II FOURIER SERIES

PART - A

1. Explain periodic function with example. [CO2-L2]

Solution: A function $f(x)$ is said to have a period T if for all ' x ', $f(x+T)=f(x)$, where T is a positive period of $f(x)$.

Eg: $f(x)=\sin x$

$$
f(x+2 \pi)=\sin (x+2 \pi)=\sin x=f(x)
$$

$\therefore \sin x$ is a periodic $f \underline{n}$. with period 2π.
2. State Dirichiet's conditions in Fourier series. [CO2 - L1-Nov/Dec 2016]

Solution:
(i) $\quad f(x)$ is periodic, single-valued and finite.
(ii) $\quad f(x)$ has a finite no. of discontinuous in any one period.
(iii) $\quad f(x)$ has atmost a finite no. of maxima \& minima.
3. Find 'bn' in the expansion of x^{2} as a Fourier series in $(-\pi, \pi)$.
[CO2 - H1 - Nov/Dec 2014]

Solution:

Given:

$$
\begin{aligned}
& f(x)=x^{2},(-\pi, \pi) \\
& f(-x)=x^{2}=f(x) \Rightarrow f(-x)=f(x) \\
& \therefore \text { The given } f \underline{f}^{\prime} \text { is Even } \\
& \quad b_{n}=0
\end{aligned}
$$

Solution: $\quad a_{0}=0 \quad \& \quad a_{n}=0 \quad\left[\because f(x)\right.$ is a_{n} odd $\left.f \underline{n}.\right]$
5. Find the Fourier constants b_{n} for $x \sin x$ in $(-\pi, \pi)$. [CO2-H1-Apr/May 2013]

Solution: $\quad \mathrm{b}_{\mathrm{n}}=0 \quad(\because x \sin x$ is an Even fn$)$
6. Find constant term in the Fourier series expansion of $f(x)=x$ in $(-\pi, \pi)$.
[CO2-H1]
Solution:

$$
\mathrm{a}_{0}=0 \quad[\because f(x)=x \text { is an odd } \mathrm{fn} \text { in }(-\pi, \pi)]
$$

7. State Parseval's Identity for the half range cosine expansion of $f(x)$ in $(0,1)$. [CO2 - L1]
Solution: Given: \square

$$
2 \int_{0}^{1}[f(x)]^{2} d x=\frac{a_{o}^{2}}{2}+\sum_{n=1}^{\infty} a_{n}^{2}
$$

$$
\text { Where: } \quad a_{o}=2 \int_{0}^{1} f(x) d x
$$

$$
a_{n}=2 \int_{0}^{1} f(x) \cos n \pi x d x
$$

8. What do you mean by Harmonic Analysis? [CO2-H2]

Solution: The process of finding the Fourier series for a $f \underline{n}$. given by numerical value is known as Harmonic Analysis.
9. In the Fourier Expansion of $f(x)=\left\{\begin{array}{c}1+2 x / \pi,(-\pi, 0) \\ 1-2 x / \pi,(0, \pi) \text { Find the value of bn. }\end{array}\right.$
[CO2-H1]
Solution: $f(x)=1+\frac{2 x}{\pi}$

$$
f(-x)=1-\frac{2 x}{\pi}=f(x) \Rightarrow \quad f(-x)=f(x)
$$

\therefore The Given fn is Even

$$
\mathrm{bn}=0
$$

10. Obtain Fourier sine series for unity in (0, π). [CO2-H2- Nov/Dec 2015]

Solution: HRSS $f(x)=\sum_{n=1}^{\infty} b n \sin n x$

$$
\begin{aligned}
\mathrm{bn} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} 1 \cdot \sin n x d x=\frac{2}{\pi}\left(\frac{-\cos n x}{n}\right)_{0}^{\pi} \\
& =-\frac{2}{\pi n}[\cos n \pi-\cos o]=-\frac{2}{\pi n}\left[(-1)^{n}-1\right]
\end{aligned}
$$

when ' n ' is Even $\Rightarrow b n=0$
' n ' is odd $\Rightarrow b n=\frac{4}{\pi n}$
$\therefore f(x)=\sum_{n=1,3}^{\infty} \frac{4}{\pi n} \sin n x$
11. If the Fourier series for the $\boldsymbol{f} \underline{\boldsymbol{n}} . \boldsymbol{f}(\boldsymbol{x})=\left\{\begin{array}{c}0, \quad 0<x<\pi \\ \sin x, \quad \pi<x<2 \pi\end{array}\right.$
is $f(x)=\frac{-1}{\pi}+\frac{2}{\pi}\left[\frac{\cos 2 x}{1.3}+\frac{\cos 4 x}{3.5}+\cdots\right]+\frac{1}{2} \sin x$
Deduce that $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}-\cdots \infty=\frac{\pi-2}{4} \quad$ [CO2-L3-May/June 2015]
Solution: Put $x=\pi / 2$ in (1)

$$
\begin{aligned}
f(\pi / 2) & =\frac{-1}{\pi}+\frac{2}{\pi}\left[\frac{\cos ^{2 \pi / 2}}{1.3}+\frac{\cos ^{4 \pi / 2}}{3.5}+\cdots\right]+\frac{\sin \frac{\pi}{2}}{2} \\
0 & =\frac{-1}{\pi}+\frac{2}{\pi}\left[\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}-\cdots \infty\right]+\frac{1}{2} \\
\frac{1}{\pi} & =-\frac{2}{\pi}\left[\frac{1}{1.3}+\frac{1}{3.5}+\cdots\right]+\frac{1}{2} \\
\left(\frac{1}{\pi}-\frac{2}{\pi}\right)\left(\frac{-\pi}{2}\right) & =\frac{1}{1.3}-\frac{1}{3.5}+\cdots
\end{aligned}
$$

$$
\frac{\pi-2}{4}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}-\cdots \infty
$$

12. If the Fourier series of the $\boldsymbol{f} \underline{n}$. $f(x)=x+x^{2},(-\pi<x<\pi)$ is $\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}(-1)^{n}$ $\left(\frac{4}{n^{2}} \cos n x-\frac{2}{n} \sin n x\right)$, find the value of $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots \infty$. [CO2-H2]

Solution: Given:

$$
\Rightarrow \quad \frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots \infty .
$$

13. If $f(x)=x^{2}+x$ is expressed as a Fourier series in the interval $(-2,2)$ to which value this series converges at $x=2$. [CO2-H2- Nov/Dec 2014]

Solution: $\quad \because x=2$ (Point of continuity)
Given: $\quad f(x)=x^{2}+x,(-2,2)$

$$
\begin{aligned}
f(-2) & =4-2=2 \\
f(2) & =4+2=6 \\
\therefore \frac{f(-2)+f(2)}{2} & =\frac{2+6}{2}=4 .
\end{aligned}
$$

14. Find the constant term in the Fourier series corresponding to $f(x)=\cos ^{2} x$ expressed in the interval $(-\pi, \pi)$. [CO2-H2]

Solution:

$$
\begin{aligned}
a_{o} & =1 / \pi \int_{-\pi}^{\pi} f(x) d x \\
& =1 / \pi \int_{-\pi}^{\pi}\left(\frac{1+\cos 2 x}{2}\right) d x=\frac{1}{\pi}\left[x+\frac{\sin 2 x}{2}\right]_{0}^{\pi}=1 \\
\therefore a_{o} & =1
\end{aligned}
$$

$$
\cos ^{2} x=\frac{1+\cos 2 x}{2}
$$

15. To which value, the half range sine series corresponding to $f(x)=x^{2}$ expressed in the interval $(0,2)$ converges at $x=2$.
[CO2-H2]

Solution: \quad Given: $\quad f(x)=x^{2},(0,2)$

$$
x=2
$$

$$
\begin{aligned}
& f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x \\
& \mathrm{Pu} x=\pi \\
& \pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n \pi-0 \\
& \Rightarrow \quad \pi^{2}-\frac{\pi^{2}}{3}=4 \sum_{n=1}^{\infty} \frac{(-1)^{n}(-1)^{n}}{n^{2}} \\
& \Rightarrow \quad \frac{2 \pi^{2}}{3}=4 \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& f(x)=x+x^{2},(-\pi, \pi) \\
& x=\pi \\
& f(-\pi)=-\pi+\pi^{2} \\
& f(\pi)=\pi+\pi^{2} \\
& \therefore \frac{f(-\pi)+f(\pi)}{2}=\pi^{2}
\end{aligned}
$$

\therefore The Fourier series converges to

$$
f(x)=4
$$

16. If $f(x)=\left\{\begin{array}{rr}\cos x, & (0<x<\pi) \\ 50, & (\pi<x<2 \pi) \text { and } f(x)=f(x+2 \pi) \text { for all } x, \text { find the sum of the }\end{array}\right.$ Fourier series of $f(x)$ at $x=\pi$. [CO2-H2]

Solution: \quad Here $x=\pi$ (Pt. of discontinuity)

$$
f(\pi)=\frac{\cos \pi+50}{2}=\frac{(-1)+50}{2}=\frac{49}{2}
$$

17. Find the root mean square of $f(x)=x^{2}$ in $(0, \pi)$. [CO2-H2]

Solution: Given: $f(x)=x^{2},(0, \pi)$.
RMS value $\bar{y}^{2}=\frac{2}{\pi} \int_{0}^{\pi}[f(x)]^{2} d x$

$$
\begin{aligned}
& \quad=\frac{2}{\pi} \int_{0}^{\pi}\left(x^{2}\right)^{2} d x=\frac{2}{\pi} \int_{0}^{\pi} x^{4} d x \\
& \quad=\frac{2}{\pi}\left(\frac{x^{5}}{5}\right)_{0}^{\pi}=\frac{2}{\pi}\left(\frac{x^{5}}{5}\right)=\frac{2 \pi^{4}}{5} \\
& \therefore \\
& \therefore \bar{y}^{2}=\frac{2 \pi^{4}}{5}
\end{aligned}
$$

18. Define Root Mean square of $f(x)$ over the range (a, b) [CO2 - L1]

Solution: The RMS value of $f(x)$ over the interval (a, b) is defined as

$$
\mathrm{RMS}=\sqrt{\frac{\int_{a}^{b}[f(x)]^{2} d x}{b-a}}
$$

19. If $f(x)=3 x+4 x^{3}$, defined in the interval ($-2,2$), then find the value of a_{1} in the Fourier series Expansion. [CO2-H2]

Solution: $\quad f(x)=3 x-4 x^{3}$

$$
\begin{aligned}
& f(-x)=-3 x-4 x^{3}=-\left(3 x-4 x^{3}\right)=-f(x) \\
& \quad \therefore f(-x)=-f(x) \\
& \quad \therefore f(x) \text { is an odd } f \frac{n . .}{} \quad a_{n}=0 \quad a_{1}=0
\end{aligned}
$$

20. If the $f \underline{n}$. $x \cos x$ has the series expansion $\sum_{n=1}^{\infty} b n \sin n x$, find the value of b_{1} in $(-\pi, \pi)$. [CO2-L1]
Solution: $\quad f(x)=\sum_{n=1}^{\infty} b n \sin n x \quad$ [The given fn is odd. $\therefore a_{0}=a_{n}=0$] $b n=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos x \sin n x d x$

$$
\begin{aligned}
\therefore b_{1} & =\frac{2}{\pi} \int_{0}^{\pi} x \cos x \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \frac{\sin 2 x}{2} d x \\
b_{1} & =\frac{1}{\pi} \int_{0}^{\pi} x \sin 2 x d x \\
& =\frac{1}{\pi}\left[(x)\left(\frac{-\cos 2 x}{2}\right)-(1)\left(\frac{-\sin 2 x}{4}\right)\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[\frac{-\pi}{2} \cos 2 \pi+0\right]=\frac{-\pi}{2 \pi}(1)=\frac{-1}{2} .
\end{aligned}
$$

21. Find Half Range sine series for $\boldsymbol{f}(\boldsymbol{x})=K$ in $0<x<\pi$. [CO2-H2]

Solution: HRSS $f(x)=\sum_{n=1}^{\infty} b n \sin n x$

$$
\begin{aligned}
b n & =\frac{2}{\pi} \int_{0}^{\pi} K \sin n x d x=\frac{2 K}{\pi} \int_{0}^{\pi} \sin n x d x \\
& =\frac{2 K}{\pi}\left[\frac{-\cos n x}{n}\right]_{0}^{\pi}=\frac{-2 K}{n \pi}[\cos n \pi-\cos 0] \\
b n & =\frac{-2 K}{n \pi}\left[(-1)^{n}-1\right]
\end{aligned}
$$

When ' n ' is even $\Rightarrow b n=0$

$$
\text { ' } \mathrm{n} \text { ' is odd } \Rightarrow b n=\frac{4 K}{n \pi}
$$

$$
\therefore f(x)=\sum_{n=1,3}^{\infty}\left(\frac{4 K}{\pi n}\right) \sin n x
$$

22. If $f(x)=2 x$ in (0,4), then find the value of a_{2} in the Fourier series Expansion.
[CO2 - L1]
Solution: Here $2 l=4=l=2$

$$
\begin{aligned}
& a_{n} \\
&=1 / l \int_{0}^{2 l} f(x) \frac{\cos n \pi x}{l} d x=1 / 2 \int_{0}^{4} / 2 x \frac{\cos n \pi x}{2} d x \\
& \therefore a_{2}=\int_{0}^{4} x \frac{\cos 2 \pi x}{2} d x=\int_{0}^{4} x \cos \pi x d x \\
&=\left[(x)\left(\frac{\sin \pi x}{\pi}\right)-(1)\left(\frac{-\cos \pi x}{\pi^{2}}\right)\right]_{0}^{4} \\
&=\frac{1}{\pi^{2}}[\cos 4 \pi-\cos 0]=\frac{1}{\pi^{2}}(1-1)=0 \\
& \therefore a_{2}=0
\end{aligned}
$$

23. Write the Fourier series in complex form for $f(x)$ defined in the interval ($C, C+2 \pi)$.
[CO2 - L1]
Solution: $\quad f(x)=\sum_{n=-\infty}^{\infty} C_{n} e^{i n x}$

$$
\text { Where } C_{n}=\frac{1}{2 \pi} \int_{C}^{C+2 \pi} f(x) e^{i n x} d x
$$

24. State Parseval's Identity for expansion of $f(x)$ as fourier series in (0,2l)
[CO2 - H2- Nov/Dec 2014]

Solution:

$$
\frac{1}{2 l} \int_{0}^{2 l}[f(x)]^{2}=\frac{a o^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a n^{2}+b n^{2}\right)
$$

25. Does $f(x)=\tan x$ possess a fourier expansion? [CO2-H1]

Solution:

$f(x)=\tan x$ has an infinite discontinuity. Dirichilet condition is not satisfied. Hence fourier Expansion does not exist.
26. Find the co-efficient C_{n} in the complex fourier series of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{-x},-1<x<1$. [CO2-H2]
Solution:

$$
\begin{aligned}
C_{n} & =\frac{1}{2} \int_{-1}^{1} f(x) e^{-i n \pi x} d x=\frac{1}{2} \int_{-1}^{1} e^{-x} e^{-i n \pi x} d x=\frac{1}{2} \int_{-1}^{1} e^{-(1+i n \pi) x} d x \\
& =\frac{1}{2}\left[\frac{e^{-(1+i n \pi) x}}{-(1+i n \pi)}\right]_{-1}^{1}=-\frac{1}{2}(1+i n \pi)\left[e^{-(1+i n \pi)}-e^{(1+i n \pi)}\right] \\
& =\frac{-1}{2(1+i n \pi)}\left[e^{-1} e^{-i n \pi}-e^{1} e^{i n \pi}\right] \\
& =\frac{-1}{2(1+i n \pi)}\left[e^{-1}(-1)^{n}-e^{1}(-1)^{n}\right] \\
& =\frac{-1}{2(1+i n \pi)}(-1)^{n}\left[e^{-1}-e^{1}\right] \\
& =\frac{-(-1)^{n}}{2(1+i n \pi)} \cdot(\nmid 2 \sin h 1) \\
C_{n}= & \frac{(-1)^{n} \sin h}{(1+i n \pi)}
\end{aligned}
$$

27. State Parseval's Identity for the half range cosine expansion of $f(x)$ in $(0,1)$. [CO2 - L1]
Solution: $f(x)=a 0 / 2+\sum_{n=1}^{\infty} a_{n} \cos n \pi x \quad(\because l=1)$
Then $2 \int_{0}^{1}[f(x)]^{2} d x=\frac{a o^{2}}{2}+\sum_{n=1}^{\infty} a n^{2}$
28. Find a_{n} in expanding e^{-x} as a fourier series in $(-\pi, \pi)$. [CO2-H2]

Solution: Given: $f(x)=e^{-x}$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-x} \cos n x d x \\
& =\frac{1}{\pi}\left[\frac{e^{-x}}{1+n^{2}}(-\cos n x+n \sin n x)\right]_{-\pi}^{\pi} \\
& =\frac{1}{\pi\left(1+n^{2}\right)}\left[e^{-\pi}(-\cos n \pi)-e^{\pi}(-\cos n \pi)\right] \\
& =\frac{1}{\pi\left(1+n^{2}\right)}\left[\cos n \pi\left(e^{\pi}-e^{-\pi}\right)\right]
\end{aligned}
$$

$$
a_{n}=\frac{(-1)^{n}}{\pi\left(1+n^{2}\right)} \cdot 2 \sin h \pi
$$

29. If $f(x)$ is discontinuous at $x=a$, what does its Fourier series represent at that point.
[CO2-H2]
Solution: $\quad \frac{f(x-a)+f(x+a)}{2}$
30. Find the root mean square value of the $f \underline{f} . f(x)=x$ in the interval ($0, l$). [CO2-L1Nov/Dec 2015]
Solution: \quad RMS value of $f(x)$ in $(0, l)$

$$
\begin{aligned}
\bar{Y}^{2} & =\frac{2}{l} \int_{0}^{l}[f(x)]^{2} d x=\frac{2}{l} \int_{0}^{l} \frac{x^{2}}{} d x \\
& =\frac{2}{l}\left(\frac{x^{3}}{3}\right)_{0}^{l}=\frac{2}{3 l}\left(l^{3}\right)=\frac{2 l^{2}}{3} \\
\therefore \bar{Y}^{2} & =\frac{2 l^{2}}{3} .
\end{aligned}
$$

PART B

1. Find the Fourier series of $f(x)=x^{2},(-\pi, \pi)$ \& deduce that
i) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6}$
ii) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}$
$=\frac{\pi^{2}}{12}$
iii) $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$

[CO2 - H2- Nov/Dec 2016]

Given:

$$
\begin{aligned}
f(x)= & x^{2} \text { in }(-\pi, \pi) \\
& f(-x)=(x)^{2}=x^{2}=f(x) \\
& f(-x)=f(x)
\end{aligned}
$$

\therefore The given function is even

$$
\therefore \quad \mathrm{bn}=0 \quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \text { an } \cos \mathrm{n} x \quad \rightarrow 1
$$

To find:

$$
\begin{aligned}
\mathrm{a}_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi}\left[\frac{x^{3}}{3}\right]_{0}^{\pi}=\frac{2}{\pi} \cdot \frac{\pi^{3}}{3}=\frac{2 \pi^{2}}{3} \\
& =>\mathrm{a}_{0}=\frac{2 \pi^{2}}{3} \\
\mathrm{a}_{\mathrm{n}} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x^{3} \cos n x d x \\
& =\frac{2}{\pi}\left[\left(x^{2}\right)\left(\frac{\sin n x}{\mathrm{n}}\right)-(2 x)\left(\frac{-\cos n x}{\mathrm{n}^{2}}\right)+2\left(\frac{-\sin n x}{\mathrm{n}^{3}}\right)\right]_{0}^{\pi}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{2}{\pi}\left[2 \pi \cdot \frac{\cos n x}{\mathrm{n}^{2}}\right]=\frac{2}{\pi}\left[2 \pi \cdot \frac{\cos n x}{\mathrm{n}^{2}}\right][\because \sin n \pi=0, \sin 0=0] \\
&=\frac{2}{\pi}\left[2 \pi \cdot \frac{(-1)^{n}}{\mathrm{n}^{2}}\right]=\frac{4(-1)^{n}}{\mathrm{n}^{2}} \quad\left[\because \cos n \pi=(-1)^{\mathrm{n}}\right] \\
&=> \\
&(1)=>\quad a_{\mathrm{n}}=\frac{4(-1)^{n}}{n^{2}} \\
& f(x)=\frac{2 \pi^{2}}{3 \times 2}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x \\
& f(x)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x \\
& f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x
\end{aligned} \rightarrow 2
$$

i) Put $x=\pi$ in (2)

$$
\begin{aligned}
& \text { (2) }=>\quad \pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n \pi \\
& \pi^{2}-\frac{\pi^{2}}{3}=4 \sum_{n=1}^{\infty} \frac{(-1)^{n}(-1)^{n}}{n^{2}} \\
& \frac{3 \pi^{2}-\pi^{2}}{3}=4 \sum_{n=1}^{\infty} \frac{(-1)^{2 n}}{n^{2}} \\
& \begin{array}{c}
\frac{2 \pi^{2}}{3} \cdot \frac{1}{4_{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \\
{\left[\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \cdot\right]=\frac{\pi^{2}}{6}}
\end{array} \\
& \begin{array}{c}
\frac{2 \pi^{2}}{3} \cdot \frac{1}{4_{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \\
{\left[\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \cdot\right]=\frac{\pi^{2}}{6}}
\end{array} \\
& \begin{array}{l}
f(x)=x^{2} \\
f(\pi)=\pi^{2} \\
f(-\pi)=(-\pi)^{2}=\pi^{2} \\
f(x)=\frac{f(\pi)+f(-\pi)}{2}=\frac{2 \pi^{2}}{2}=\pi^{2} \\
f(x)=\pi^{2}
\end{array} \\
& {\left[\because(-1)^{2 n}=1\right]} \\
& f(x)=x^{2} \\
& f(0)=0 \\
& \text { ii) Put } x=0 \text { in (2) }
\end{aligned}
$$

$$
\begin{aligned}
(2)=> & =\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos 0 \\
\frac{-\pi^{2}}{3} & =4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \quad[\because \cos 0=1] \\
\frac{-\pi^{2}}{3} & =4\left[-\frac{1}{1^{2}}+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\ldots \cdot\right]
\end{aligned}
$$

To find:

$$
\begin{aligned}
\mathrm{a}_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} f\left(x+x^{2}\right) d x \\
& =\frac{1}{\pi}\left[\frac{x^{2}}{2}+\frac{x^{3}}{3}\right]_{-\pi}^{\pi}=\frac{1}{\pi}\left[\frac{\pi^{2}}{2}+\frac{\pi^{3}}{3}-\frac{\pi^{2}}{2}+\frac{\pi^{3}}{3}\right] \\
& =\frac{1}{\pi} \cdot \frac{2 \pi^{3}}{3}=\frac{2 \pi^{2}}{2} \\
\mathrm{a}_{0} & =\frac{2 \pi^{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{a}_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x+x^{2}\right) \cos n x d x \\
& =\frac{1}{\pi}\left[\left(x+x^{2}\right)\left(\frac{\sin n x}{n}\right)-(1+2 x)\left(\frac{-\cos n x}{n^{2}}\right)+(2)\left(\frac{-\sin n x}{n^{3}}\right)\right]_{-\pi}^{\pi}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{\pi}\left[+(1+2 \pi)\left(\frac{+\cos n \pi}{n^{2}}\right)-(1-2 \pi)\left(\frac{-\cos n(-\pi)}{n^{2}}\right)\right] \\
&=\frac{1}{\pi}\left[(1+2 \pi) \frac{(-1)^{n}}{n^{2}}-(1-2 \pi) \frac{(-1)^{n}}{n^{2}}\right] \\
&=\frac{(-1)^{n}}{\pi n^{2}}[1+2 \pi-1+2 \pi]=\frac{(-1)^{n}}{\pi n^{2}} \cdot 4 \pi=\frac{4(-1)^{n}}{n^{2}} \\
& a_{n}\left.=\frac{4(-1)^{n}}{n^{2}}\right] \\
& \mathrm{b}_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x+x^{2}\right) \sin n x d x \\
&=\frac{1}{\pi}\left[\left(x+x^{2}\right)\left(\frac{-\cos n x}{n}\right)-(1+2 x)\left(\frac{-\sin n x}{n^{2}}\right)+(2)\left(\frac{\cos n x}{n^{3}}\right)\right]_{-\pi}^{\pi} \\
& \frac{\pi^{2}}{3}=-4\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots .\right] \\
& \frac{\pi^{2}}{3}=\frac{1}{4}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots .\right] \\
& {\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots .\right] }=\frac{\pi^{2}}{12} \\
& \text { iii) } \begin{aligned}
& \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . .=\frac{\pi^{2}}{8} \\
& \text { Add eqn. (3) and }(4) \\
& \frac{\pi^{2}}{6}+\frac{\pi^{2}}{12}=\left[\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots .\right]+\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots .\right] \\
&=2\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .\right] \\
& {\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .\right] }=\frac{\pi^{2}}{8} \\
& \frac{2 \pi^{2}+\pi^{2}}{12}=\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .\right] \\
& \frac{3 \pi^{2}}{12}=\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .\right] \\
& \frac{\pi^{2}}{4} \cdot \frac{1}{2}=\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .\right] \\
&
\end{aligned} \\
&
\end{aligned}
$$

2. Find the Fourier series of $f(x)=x+x^{2},(-\pi, \pi) \&$ deduce that

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots .=\frac{\pi^{2}}{6} .[\text { CO2 - H2- Nov/Dec 2014] }
$$

Given:

$$
\begin{aligned}
& f(x)=x+x^{2},(-\pi, \pi) \\
& f(-x)=-x+x^{2}=x+x^{2}
\end{aligned}
$$

\therefore The given function is neither even nor odd

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}} \cos \mathrm{n} x+\sum_{n=1}^{\infty} \mathrm{b}_{\mathrm{n}} \sin \mathrm{n} x
$$

Given:

$$
\begin{array}{rl}
& f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x \\
\mathrm{Pu} & x=\pi \\
& \pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n \pi-0 \\
\Rightarrow \quad & \pi^{2}-\frac{\pi^{2}}{3}=4 \sum_{n=1}^{\infty} \frac{(-1)^{n}(-1)^{n}}{n^{2}} \\
\Rightarrow \quad & \frac{2 \pi^{2}}{3}=4 \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
\Rightarrow \quad & \frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots \infty .
\end{array}
$$

3. Find the Fourier series of $f(x)=|x|,(-\pi, \pi) \&$ deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .=\frac{\pi^{2}}{8}$ Given:
[CO2 - H2- May/June 2014]

$$
\begin{aligned}
f(x)= & |x|,(-\pi, \pi) \\
& f(-x)=|x|=f(x)
\end{aligned}
$$

\therefore The given function is even
$\therefore \quad \mathrm{b}_{\mathrm{n}}=0$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}} \cos \mathrm{n} x
$$

To find:

$$
\begin{aligned}
& \mathrm{a}_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi}|x| d x=\frac{2}{\pi} \int_{0}^{\pi} x d x \\
& \quad=\frac{2}{\pi}\left[\frac{x^{2}}{2}\right]_{0}^{\pi}=\frac{2}{\pi} \cdot \frac{\pi^{2}}{2}=\pi \\
& \mathrm{a}_{0}=\pi \\
& \mathrm{a}_{\mathrm{n}}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& \quad=\frac{2}{\pi}\left[(x)\left(\frac{\sin n x}{n}\right)-(1)\left(\frac{-\cos n x}{n^{2}}\right)\right]_{-\pi}^{\pi} \\
& \quad=\frac{2}{\pi}\left[\frac{\cos n \pi}{n^{2}}-\frac{\cos 0}{n^{2}}\right]=\frac{2}{\pi}\left[\frac{(-1)^{n}}{n^{2}}-\frac{1}{n^{2}}\right] \\
& \mathrm{a}_{\mathrm{n}}
\end{aligned}=\frac{2}{\pi n^{2}}\left[(-1)^{\mathrm{n}}-1\right] \quad . \quad l
$$

When ' n ' is even $=>$ an $=\frac{2}{\pi n^{2}}[1-1]=0$

When ' n ' is odd $=>$ an $=\frac{2}{\pi n^{2}}[-1-1]=\frac{-4}{\pi n^{2}}$
(1) $=>\quad f(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \cos n x$

$$
\begin{aligned}
& =\frac{1}{\pi}\left[-\left(\pi+\pi^{2}\right)\left(\frac{\cos n \pi}{n}\right)+2 \frac{\cos n \pi}{n^{3}}+\left(-\pi+\pi^{2}\right)\left(\frac{\cos n \pi}{n}\right)-2 \frac{\cos n \pi}{n^{3}}\right] \\
& =\frac{1}{\pi}\left[-\left(\pi+\pi^{2}\right) \frac{\cos n \pi}{n^{3}}+\left(-\pi+\pi^{2}\right) \frac{\cos n \pi}{n^{3}}\right] \\
& =\frac{\cos n \pi}{n \pi}\left[-\pi-\pi^{2}-\pi+\pi^{2}\right]=\frac{\cos n \pi}{n \pi}(-2 \pi)=\frac{-2(-1)^{n}}{n} \\
b_{n} & =\frac{-2(-1)^{n}}{n}
\end{aligned}
$$

(1) $=>\quad f(x)=\frac{2 \pi^{2}}{2 \times 3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x$

$$
f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x \rightarrow 2
$$

Put $x=\pi$ in (2)

$$
\left.\begin{array}{rl}
\text { (2) }=> & \pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x-0[\because \sin n \pi=0] \\
\pi^{2}-\frac{\pi^{2}}{3} & =4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}(-1)^{n} \quad\left[\cos n \pi=(-1)^{n}\right] \\
\frac{3 \pi^{2}-\pi^{2}}{3} & =4 \sum_{n=1}^{\infty} \frac{(-1)^{2 n}}{n^{2}} \\
\frac{2 \pi^{2}}{3} \cdot \frac{1}{4} & =\sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
f(-\pi)=x+x^{2} \\
f(\pi)=\pi+\pi^{2} \\
f(x)=\frac{f(-\pi)+f(\pi)}{2} \\
=\frac{-\pi+\pi^{2}+\pi+\pi^{2}}{2} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\frac{\pi^{2}}{6} \\
f(x)=\frac{2 \pi^{2}}{2}=\pi^{2}
\end{array}\right] \begin{aligned}
{\left[\frac{1}{1^{2}}+\frac{1}{2}+\frac{1}{3^{2}}+\ldots\right] } & =\frac{\pi^{2}}{6} \\
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi}\left(\pi-\frac{2 x}{\pi}\right) \cos n x d x \\
& =\frac{2}{\pi}\left[\left(\pi-\frac{2 x}{\pi}\right)\left(\frac{\sin n x}{n}\right)-\left(\left(\frac{-2}{\pi}\right)\right)\left(\frac{-\cos n x}{n^{2}}\right)\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[\frac{-2}{\pi}\left[\frac{\cos n \pi}{n^{2}}\right]-\left(\frac{-2}{\pi}\right)\left[\frac{\cos 0}{n^{2}}\right]\right]\left[\cos n \pi=(-1)^{\mathrm{n}}\right] \\
& =\frac{2}{\pi}\left[\frac{-2(-1)^{n}}{\pi n^{3}}+\frac{2}{\pi n^{3}}\right]=\frac{4}{\pi^{2} n^{3}}\left[1-(-1)^{n}\right] \\
a_{n} & =\frac{4}{\pi^{2} n^{3}}\left[1-(-1)^{\mathrm{n}}\right]
\end{aligned}
$$

When ' n ' is even $a_{n}=\frac{4}{\pi^{2} n^{3}}[1-1]=0$
When ' n ' is odd $\mathrm{a}_{\mathrm{n}}=\frac{4}{\pi^{2} n^{3}}[1+1]=\frac{8}{\pi^{2} n^{3}}$

$$
\begin{aligned}
(1)=> & f(x)=\frac{2(\pi-1)}{2}+\frac{8}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \cos n x \\
& f(x)=(\pi-1)+\frac{8}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \cos n x
\end{aligned}
$$

Put $x=0$ in (2)
(2) $=>\quad \pi=(\pi-1)+\frac{8}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}}(1) \quad[\cos 0=1]$

$$
\begin{gathered}
\pi-\pi+1=\frac{8}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \\
1 \cdot \frac{8}{\pi^{2}}=\sum_{n=1,3}^{\infty} \frac{1}{n^{2}}
\end{gathered}
$$

$$
\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .\right]=\frac{\pi^{2}}{8}
$$

Put $x=0$ in (2)
(2) $=>\quad 0=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \cos 0$

$$
f(x)=|x|
$$

$$
f(0)=0
$$

$\frac{\pi}{2}=\frac{-4}{\pi} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}}$
$[\because \cos 0=1]$
$\frac{\pi^{2}}{8}=\sum_{n=1,3}^{\infty} \frac{1}{n^{2}}$
$\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots.\right]=\frac{\pi^{2}}{8}$
4. Find the Fourier series of $f(x)=\left\{\begin{array}{l}\pi-\frac{2 x}{\pi},(-\pi, 0) \\ \pi+\frac{2 x}{\pi},(-\pi, 0)\end{array}\right.$ \& deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .=\frac{\pi^{2}}{8} . \quad[\mathrm{CO} 2-\mathrm{H} 2]$

Given:

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\pi-\frac{2 x}{\pi},(-\pi, 0) \\
\pi+\frac{2 x}{\pi},(-\pi, 0)
\end{array}\right. \\
& f(x)=\pi-\frac{2 x}{\pi}
\end{aligned} \begin{aligned}
& f(-x)=\pi-\frac{2(-x)}{\pi}=\pi+\frac{2 x}{\pi}=f(x)
\end{aligned}
$$

\therefore The given function is an even function

$$
\therefore \quad \mathrm{b}_{\mathrm{n}}=0 \quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \text { an } \cos n x
$$

To find:

$$
\begin{aligned}
\mathrm{a}_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi}\left(\pi-\frac{2 x}{\pi}\right) d x \\
& =\frac{2}{\pi}\left[\pi x-\frac{2 x^{2}}{2 \pi}\right]_{0}^{\pi}=\frac{2}{\pi}\left[\pi^{2}-\frac{\pi^{2}}{\pi}\right]=\frac{2}{\pi}\left[\pi^{2}-\pi\right]
\end{aligned}
$$

$$
=\frac{2 \pi}{\pi}[\pi-1]=2[\pi-1]
$$

$$
\mathrm{a}_{0}=2[\pi-1]
$$

$$
\mathrm{a}_{0}=\frac{l}{\mathrm{n}^{2} \pi^{2}}\left[1-(-1)^{\mathrm{n}}\right]
$$

When ' n ' is even $=>a_{n}=\frac{l}{\pi^{2} n^{3}}[1-1]=0$
When ' n ' is odd $=>a_{n}=\frac{l}{\pi^{2} n^{3}}[1+1]=\frac{2 l}{\pi^{2} n^{3}}$

$$
\begin{aligned}
& \mathrm{b}_{0}=\frac{1}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x+\frac{1}{l} \int_{l}^{2 l} f(x) \sin \frac{n \pi x}{l} d x \\
&=\frac{1}{l} \int_{0}^{l} f(l-x) \sin \frac{n \pi x}{l} d x+0 \\
&=\frac{1}{l}\left[(l-x)\left(\frac{-\cos \frac{n \pi x}{l}}{\frac{n \pi}{l}}\right)-(-1)\left(\frac{\sin \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)\right]_{0}^{l} \\
&=\frac{1}{l}\left[0-\left(-l \cdot \frac{\cos 0}{\frac{n \pi}{l}}\right)\right]=\frac{1}{l}\left[\frac{l^{2}}{n \pi}\right]=\frac{l}{n \pi} \\
& \mathrm{~b}_{\mathrm{n}}=\frac{l}{n \pi} \\
& \quad[\cos 0=1]
\end{aligned}
$$

$$
\begin{array}{rll}
(1)=>\quad f(x) & =\frac{l}{2 \times 2}+\frac{2 l}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \cos \frac{n \pi x}{l}+\frac{l}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi x}{l} \\
f(x) & =\frac{l}{4}+\frac{2 l}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \cos \frac{n \pi x}{l}+\frac{l}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi x}{l} & \rightarrow 2
\end{array}
$$

Put $x=0$ in (2)

$$
\begin{array}{rlr}
\frac{l}{2} & =\frac{l}{4}+\frac{2 l}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}}(\cos 0)+0 \\
\frac{l}{2}-\frac{l}{4} & =\frac{2 l}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \\
\frac{l}{4} & =\frac{2 l}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} & {[\because \sin 0=0]} \\
\frac{l}{4} \cdot \frac{2 l}{\pi^{2}} & =\sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \\
{\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}\right.} & \left.+\frac{1}{5^{2}}+\ldots\right]=\frac{\pi^{2}}{8}
\end{array}
$$

5. Find the Fourier series of $f(x)=\left\{\begin{array}{ll}(l-x),(0, l) \\ 0 & ,(l, 2 l)\end{array}\right.$ and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$. $=\frac{\pi^{2}}{8}$

Given:

$$
f(x)= \begin{cases}(l-x) & ,(0, l) \\ 0 & ,(l, 2 l)\end{cases}
$$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \text { an } \cos \frac{n \pi x}{l}+\sum_{n=1}^{\infty} b n \sin \frac{n \pi x}{l}
$$

To find:

$$
\begin{aligned}
& \mathrm{a}_{0}=\frac{1}{l} \int_{0}^{l} f(x) d x \\
&=\frac{1}{l} \int_{0}^{l} f(x) d x+\frac{1}{l} \int_{l}^{2 l} f(x) d x+\frac{1}{l} \int_{0}^{l}(l-x) d x+0 \\
&=\frac{1}{l}\left[l x-\frac{x^{2}}{2}\right]_{0}^{l} \\
&=\frac{1}{l}\left[l^{2}-\frac{l^{2}}{2}\right]=\frac{1}{l}\left[l^{2}-\frac{2 l^{2}-l^{2}}{2}\right]=\frac{1}{l} \cdot \frac{l^{2}}{2}=\frac{l}{2} \\
&=\quad \quad[\because f(x)=0 \text { in }(l, 2)] \\
& \mathrm{a}_{0}=\frac{l}{2} \\
&=\frac{1}{l} \int_{0}^{l} f(l-x) \cdot \cos \frac{n \pi x}{l} d x+0 \\
&=\frac{1}{l}\left[(l-x)\left(\frac{\sin \frac{n \pi x}{l}}{\frac{n \pi}{l}}\right)-(-1)\left(\frac{-\cos \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)\right]_{0}^{l} \\
&=\frac{1}{l}\left[\frac{-\cos \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}+\frac{\cos 0}{\frac{n^{2} \pi^{2}}{l^{2}}}\right]=\frac{1}{l}\left[\frac{l^{2}}{n^{2} \pi^{2}}\left(-(-1)^{n}+1\right)\right] \\
& \mathrm{a}_{\mathrm{n}}=\frac{4}{\pi^{2} n^{3}}\left[1-(-1)^{\mathrm{n}}\right]
\end{aligned}
$$

6. Find the Fourier series of $f(x)=\left\{\begin{array}{c}1+x,(-2,0) \\ 1-x,(0,2)\end{array}\right.$ hence deduce that $\sum_{1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$ $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}$ an $\cos \frac{n \pi x}{l}+\sum_{n=1}^{\infty} b n \sin \frac{n \pi x}{l}$ [CO2-H2-Apr/May 2016]

Given:

$$
f(x)=\left\{\begin{array}{c}
1+x,(-2,0) \\
1-x,(0,2)
\end{array}\right.
$$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \text { an } \cos \frac{n \pi x}{l}+\sum_{n=1}^{\infty} b n \sin \frac{n \pi x}{l}
$$

$$
\rightarrow 1
$$

$$
\begin{aligned}
f(x) & =1+x \\
f(-x) & =1-x=f(x)
\end{aligned}
$$

\therefore The given function is even

$$
\therefore \mathrm{b}_{\mathrm{n}}=0
$$

To find:

$$
\begin{aligned}
\mathrm{a}_{0} & =\frac{2}{l} \int_{0}^{l} f(x) d x=\frac{2}{2} \int_{0}^{2} f(1-x) d x \\
& =\left[x-\frac{x^{2}}{2}\right]_{0}^{2}=2-\frac{4^{2}}{2}=0 \\
\mathrm{a}_{0} & =0 \\
\mathrm{a}_{\mathrm{n}} & =\frac{2}{l} \int_{0}^{l} f(x) \operatorname{con} \frac{n \pi x}{l} d x \\
& =\frac{2}{2} \int_{0}^{2} f(1-x) \cos \frac{n \pi x}{l} d x \\
& =\left[(1-x)\left(\frac{-\sin \frac{n \pi x}{2}}{\frac{n \pi}{2}}\right)-(-1)\left(\frac{-\cos \frac{n \pi x}{2}}{\frac{n^{2} \pi^{2}}{4}}\right)\right]_{0}^{2} \\
& =\frac{4}{n^{2} \pi^{2}}\left[-\cos \frac{n \pi 2}{2}+\cos 0\right]=\frac{4}{n^{2} \pi^{2}}\left[-(-1)^{n}+1\right] \\
\mathrm{a}_{\mathrm{n}} & =\frac{4}{\pi^{2} n^{3}}\left[1-(-1)^{\mathrm{n}}\right]
\end{aligned}
$$

$$
a_{n}=\frac{4}{\pi^{2} n^{3}}\left[1-(-1)^{n}\right]
$$

When ' n ' is even $=>a_{n}=\frac{4}{\pi^{2} n^{3}}[1-1]=0$
When ' n ' is odd $=>a_{n}=\frac{4}{\pi^{2} n^{3}}[1+1]=\frac{8}{\pi^{2} n^{3}}$
(1) $=>\quad f(x)=\sum_{n=1,3}^{\infty} \frac{8}{\pi^{2} n^{3}} \cos \frac{n \pi x}{2}$

Put $x=0$ in (2)

$$
\text { (2) }=>\quad \begin{aligned}
& 1=\frac{8}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{\cos 0}{n^{2}} \\
& 1=\frac{8}{\pi^{2}} \sum_{n=1,3}^{\infty} \frac{1}{n^{2}} \\
& \sum_{n=1,3}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{8} \\
& \quad\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .\right]=\frac{\pi^{2}}{8}
\end{aligned}
$$

7. Find the half range sine series for $f(x)=x(\pi-x)$ in ($0, \pi$) deduce that $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\ldots .=\frac{\pi^{3}}{3^{2}} \quad$.
[CO2-H2-Nov/Dec 2015]

Given:

$$
f(x)=x(\pi-x) \text { in }(0, \pi)
$$

HRSS:

$$
f(x)=\sum_{n=1}^{\infty} b n \sin n x
$$

To find:

$$
\begin{aligned}
\mathrm{b}_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} f\left(\pi x-x^{2}\right) \sin n x d x \\
& =\frac{2}{\pi}\left[\left(\pi x-x^{2}\right)\left(\frac{-\cos n x}{n}\right)-(\pi-2 x)\left(\frac{-\sin n x}{n^{2}}\right)+(-2)\left(\frac{\cos n x}{n^{3}}\right)\right]_{0}^{\pi}
\end{aligned}
$$

To find:

$$
\begin{aligned}
\mathrm{a}_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi}\left(\pi x-x^{2}\right) d x \\
& =\frac{2}{\pi}\left[\pi \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{\pi}=\frac{2}{\pi}\left[\frac{\pi^{3}}{2}-\frac{\pi^{3}}{3}\right]=\frac{2}{\pi}\left[\frac{3 \pi^{3}-2 \pi^{3}}{6}\right] \\
& =\frac{2}{\pi}\left[\frac{\pi^{3}}{6}\right]=\frac{\pi^{3}}{3} \\
\mathrm{a}_{0} & =\frac{\pi^{3}}{3} \\
\mathrm{a}_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi}\left(\pi x-x^{2}\right) \cos n x d x \\
& =\frac{2}{\pi}\left[\left(\pi x-x^{2}\right)\left(\frac{\sin n x}{n}\right)-(\pi-2 x)\left(\frac{-\cos n x}{n^{2}}\right)+(-2)\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[(\pi-2 \pi)\left(\frac{\cos n x}{n^{2}}\right)-(\pi)\left(\frac{\cos 0}{n^{2}}\right)\right] \\
& =\frac{2}{\pi}\left[-\pi \frac{(-1)^{n}}{n^{2}}-\pi \frac{1}{n^{2}}\right]=-\frac{2 \pi}{\pi n^{2}}\left[\frac{\pi^{3}}{6}\right]\left[(-1)^{\mathrm{n}}+1\right] \\
\mathrm{a}_{\mathrm{n}} & =\frac{-2}{n^{3}}\left[(-1)^{\mathrm{n}}+1\right]
\end{aligned}
$$

When ' n ' is even $=>a_{n}=\frac{-2}{n^{3}}[1+1]=\frac{4}{n^{3}}$
When ' n ' is odd $=>a_{n}=\frac{-2}{n^{3}}[1-1]=0$
(1) $=>\quad f(x)=\frac{\pi^{2}}{3 \times 2}-4 \sum_{n=2,4}^{\infty} \frac{1}{n^{3}} \cos n x$

$$
\begin{align*}
f(x) & =\frac{\pi^{2}}{6}-4 \sum_{n=2,4}^{\infty} \frac{1}{n^{3}} \cos n x \\
\mathrm{~b}_{\mathrm{n}} & =\frac{2}{\pi}\left[\left(\pi^{2}-\pi^{2}\right)\left(\frac{-\cos n \pi}{n^{2}}\right)-0-2\left(\frac{\cos n \pi}{n^{3}}\right)+2\left(\frac{\cos 0}{n^{3}}\right)\right] \\
& =\frac{2}{\pi}\left[\frac{-2}{n^{3}}(-1)^{n}+\frac{2}{n^{3}}\right]=\frac{2}{\pi}\left[\frac{2}{n^{3}}\left(1-(-1)^{n}\right)\right] \\
\mathrm{b}_{\mathrm{n}} & =\frac{4}{\pi n^{3}}\left[1-(-1)^{\mathrm{n}}\right]
\end{align*}
$$

When ' n ' is even $=>b_{n}=\frac{4}{\pi n^{3}}[1-1]=0$
When ' n ' is odd $=>b_{n}=\frac{4}{\pi n^{3}}[1+1]=\frac{8}{\pi n^{3}}$
(1) $=>\quad f(x)=\frac{8}{\pi} \sum_{n=1,3}^{\infty} \frac{1}{n^{3}} \sin n x$

Put $x=\frac{\pi}{2}$ in (2)
(2) $\Rightarrow \quad \frac{\pi^{2}}{4}=\frac{8}{\pi} \sum_{n=1,3}^{\infty} \frac{1}{n^{3}} \sin \frac{n \pi}{2}$

$$
\begin{aligned}
\frac{\pi^{2}}{4} & =\frac{8}{\pi}\left[\frac{\sin \frac{\pi}{2}}{1^{3}}+\frac{\sin \frac{3 \pi}{2}}{3^{3}}+\ldots\right] \\
\frac{\pi^{2}}{4} \cdot \frac{\pi}{8} & =\left[\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots\right] \\
\frac{\pi^{3}}{32} & =\left[\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\cdots\right]
\end{aligned}
$$

$$
\left[\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\cdots\right]=\frac{\pi^{3}}{32} \quad\left[\because \sin \frac{\pi}{2}=1 \sin \frac{3 \pi}{2}=-1 \sin \frac{5 \pi}{2}=1 \sin \frac{7 \pi}{2}=-1\right]
$$

8. Compute the first two harmonics of the Fourier series for $f(x)$ from the following data. [CO2 - H2-Apr/May 2015]

x	0	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	2π
y	1.0	1.4	1.9	1.7	1.5	1.2	1.0

$$
\begin{gather*}
f(x)=\frac{a_{0}}{2}+\left(\mathrm{a}_{1} \cos x+\mathrm{b}_{1} \sin x\right)+\left(\mathrm{a}_{2} \cos x+\mathrm{b}_{2}\right. \\
\sin x)
\end{gather*}
$$

\boldsymbol{x}	\mathbf{y}	Cos \boldsymbol{x}	$\mathbf{C o s} \mathbf{2 x}$	\mathbf{Y} cos \boldsymbol{x}	\mathbf{Y} cos $\mathbf{2 x}$	$\mathbf{S i n} \boldsymbol{x}$	Sin $\mathbf{2 x}$	$\mathbf{Y} \sin \boldsymbol{x}$	$\mathbf{Y} \boldsymbol{\operatorname { s i n }}$ $\mathbf{2 x}$
0	1.0	1	1	1.0	1	0	0	0	0
$\frac{\pi}{3}$	1.4	0.5	-0.5	0.7	-0.7	0.866	0.866	1.212	1.212
$\frac{2 \pi}{3}$	1.9	-0.5	-0.5	-0.95	-0.95	0.866	-0.866	1.6454	-1.6454
π	1.7	-1		-1.7	1.7	0	0	0	0
$\frac{4 \pi}{3}$	1.5	-0.5	-0.5	-0.75	-0.75	-0.866	0.866	-1.299	1.299
$\frac{5 \pi}{3}$	1.2	0.5	-0.5	0.6	-0.6	-0.866	-0.866	-1.0392	-1.03

PARSEVEL'S IDENTITY

HRCS is $(0, \pi), \frac{2}{\pi} \int_{0}^{\pi}[F(x)]^{2} d x=\frac{a_{0}^{2}}{2} \sum_{n=1}^{\infty} a_{0}^{2}$
Sub. $f(x)=x(\pi-x), \mathrm{a}_{0}=\frac{\pi^{2}}{3}, \mathrm{a}_{\mathrm{n}}=\frac{-4}{n^{2}}$ in equ (3)

$$
\begin{aligned}
(3)=> & \frac{2}{\pi} \int_{0}^{\pi}(\pi x-x)^{2} d x=\left(\frac{\pi^{2}}{3}\right)^{2} \frac{1}{2}+\sum_{n=2,4}^{\infty}\left(\frac{-4}{n^{2}}\right)^{2} \\
& \frac{2}{\pi} \int_{0}^{\pi}\left(\pi^{2} x^{2}+x^{4}-2 \pi x^{3}\right) d x=\frac{\pi^{4}}{18}+16 \sum_{n=2,4}^{\infty} \frac{1}{n^{4}} \\
& \frac{2}{\pi}\left[\frac{\pi^{2} x^{2}}{3}+\frac{x^{5}}{5}-\frac{2 \pi x^{4}}{4}\right]_{0}^{\pi}=\frac{\pi^{4}}{18}+16 \sum_{n=2,4}^{\infty} \frac{1}{n^{4}} \\
& \frac{2}{\pi}\left[\frac{\pi^{5}}{3}+\frac{\pi^{5}}{5}-\frac{\pi^{5}}{4}\right]=\frac{\pi^{4}}{18}+16 \sum_{n=2,4}^{\infty} \frac{1}{n^{4}} \\
& \frac{2}{\pi}\left[\frac{10 \pi^{5}+6 \pi^{5}-15 \pi^{5}}{30}\right]=\frac{\pi^{4}}{18}+16 \sum_{n=2,4}^{\infty} \frac{1}{n^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{\pi}\left[\frac{\pi^{5}}{30}\right]=\frac{\pi^{4}}{18}+16\left[\frac{1}{2^{4}}+\frac{1}{4^{4}}+\frac{1}{6^{4}}+\ldots\right] \\
& \frac{\pi^{4}}{15}-\frac{\pi^{4}}{18}=16\left[\frac{1}{16}+\frac{1}{16.16}+\frac{1}{16.81}+\ldots\right] \\
& \frac{3 \pi^{4}}{270}=\frac{16}{16}=\left[\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots\right] \\
& {\left[\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots\right]=\frac{\pi^{4}}{90}} \\
& \mathrm{a}_{0}=2\left[\frac{\Sigma Y}{n}\right]=2\left[\frac{8.7}{6}\right]=2 \times 1.45=2.9 \\
& \mathrm{a}_{0}=2.9
\end{aligned}
$$

$$
\mathrm{a}_{1}=2\left[\frac{\Sigma Y \cos x}{n}\right]=2\left[\frac{-1.1}{6}\right]=-0.366
$$

$$
a_{1}=0.366
$$

$$
\mathrm{a}_{2}=2\left[\frac{\sum Y \cos 2 x}{n}\right]=2\left[\frac{-0.3}{6}\right]=-0.1
$$

$$
a_{2}=-0.1
$$

$$
\mathrm{b}_{1}=2\left[\frac{\Sigma Y \sin x}{n}\right]=2\left[\frac{0.5192}{6}\right]=0.1730
$$

$$
\mathrm{b}_{1}=-0.1
$$

$$
\mathrm{b}_{2}=2\left[\frac{\Sigma Y \sin 2 x}{n}\right]=2\left[\frac{-0.1644}{2}\right]=-0.0548
$$

$$
\mathrm{b}_{2}=-0.0548
$$

$(1)=>f(x)=\frac{1.45}{2}+(-0.36 \cos x+0.17 \sin x)+(-0.1 \cos 2 x-0.054 \sin 2 x)$

$$
f(x)=1.45+(-0.36 \cos x+0.17 \sin x)+(-0.1 \cos 2 x-0.054 \sin 2 x)
$$

9. Find the Fourier series of second harmonic to represent the function given in the following data. [CO2-H2]

x	0	1	2	3	4	5
y (x)	9	19	24	28	26	20

Here the length of the interval is 6 .

$$
\begin{aligned}
2 I & =6, I=3 \\
f(x) & =\frac{a_{0}}{2}+\mathrm{a}_{1} \cos \frac{\pi x}{l}+\mathrm{a}_{2} \cos \frac{2 \pi x}{l}+\mathrm{b}_{1} \sin \frac{\pi x}{l}+\mathrm{b}_{2} \sin \frac{2 \pi x}{l}
\end{aligned}
$$

$$
f(x)=\frac{a_{0}}{2}+\mathrm{a}_{1} \cos \frac{\pi x}{l}+\mathrm{a}_{2} \cos \frac{2 \pi x}{l}+\mathrm{b}_{1} \sin \frac{\pi x}{l}+\mathrm{b}_{2} \sin \frac{2 \pi x}{l} \quad \rightarrow 6
$$

\boldsymbol{x}	$\frac{\pi x}{3}$	$\frac{2 \pi x}{3}$	\mathbf{y}	$\boldsymbol{\operatorname { c o s } \frac { \pi x } { 3 }}$	$\mathbf{y} \cos \frac{\pi x}{3}$	\mathbf{y} $\boldsymbol{\operatorname { c o s }} \frac{2 \pi x}{3}$	$\boldsymbol{\operatorname { s i n }} \frac{\pi x}{3}$	$\mathbf{y} \sin \frac{\pi x}{3}$	$\mathbf{y} \sin \frac{2 \pi x}{3}$
0	0	0	9	1	9	9	0	0	0
1	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	18	0.5	9	-9	0.866	15.58	15.6
2	$\frac{2 \pi}{3}$	$\frac{4 \pi}{3}$	24	-0.5	-12	-24	0.866	20.78	0
3	π	2π	28	-1	-28	28	0	0	0
4	$\frac{4 \pi}{3}$	$\frac{8 \pi}{3}$	26	-0.5	-13	-13	-0.866	-22.51	22.6
5	$\frac{5 \pi}{3}$	$\frac{10 \pi}{3}$	20	0.5	10	-10	-0.866	-17.32	-17.4

10. Find the Fourier series of $f(x)=x(\pi-x)^{2}$ in $(0,2 \pi) \&$ deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6}$ [CO2-H2-Nov/Dec 2012]

Given:

$$
f(x)=x(\pi-x)^{2} \text { in }(0,2 \pi)
$$

$$
f(x)=\frac{a_{0}}{2} \sum_{n=1}^{\infty} \text { an } \cos n x+\sum_{n=1}^{\infty} b n \sin n x \quad \rightarrow 1
$$

To find:

$$
\begin{aligned}
& \begin{aligned}
\mathrm{a}_{0} & =\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x=\frac{1}{\pi} \int_{0}^{2 \pi} f(\pi-x)^{2} d x \\
& =\frac{1}{\pi}\left[\frac{(\pi-x)^{3}}{-3}\right]_{0}^{2 \pi}=\frac{1}{\pi}\left[\frac{\pi^{3}}{3}+\frac{\pi^{3}}{3}\right]=\frac{2 \pi^{3}}{3} \\
\mathrm{a}_{0} & =\frac{2 \pi^{3}}{3} \\
\mathrm{a}_{\mathrm{n}} & =\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{0}^{2 \pi} f(\pi-x)^{2} \cos n x d x \\
& =\frac{1}{\pi}\left[(\pi-x)^{2}\left(\frac{\sin n x}{n}\right)-2(\pi-x)(-1)\left(\frac{-\cos n x}{n^{2}}\right)+2\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{2 \pi} \\
& =\frac{1}{\pi}\left[2 \pi \frac{\cos 2 n \pi}{n^{2}}+2 \pi \frac{\cos 0}{n^{2}}\right] \quad[\cos 2 \mathrm{n} \pi=1, \cos 0=1] \\
& =\frac{1}{\pi}[2 \pi(1+1)]=\frac{4 \pi}{\pi n^{2}} \quad \\
\mathrm{a}_{0} & =\frac{4}{n^{2}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{b}_{\mathrm{n}} & =\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x=\frac{1}{\pi} \int_{0}^{2 \pi} f(\pi-x)^{2} \sin n x d x \\
& =\frac{1}{\pi}\left[(\pi-x)^{2}\left(\frac{-\cos \mathrm{n} x}{n}\right)-2(\pi-x)(-1)\left(\frac{-\sin \mathrm{n} x}{n^{2}}\right)+2\left(\frac{\cos n x}{n^{3}}\right)\right]_{0}^{2 \pi} \\
\mathrm{a}_{0} & =2\left[\frac{\sum Y}{n}\right]=2\left[\frac{125}{6}\right]=41.66 \\
& \mathrm{a}_{0}=41.66
\end{aligned}
$$

$$
\mathrm{a}_{1}=2\left[\frac{\sum Y \cos \frac{\pi x}{3}}{n}\right]=2\left[\frac{-25}{6}\right]=-8.33
$$

$$
a_{1}=-8.33
$$

$$
\mathrm{a}_{2}=2\left[\frac{\sum Y \cos \frac{2 \pi x}{3}}{n}\right]=2\left[\frac{-19}{6}\right]=-6.33
$$

$$
\mathrm{a}_{2}=-6.33
$$

$$
\mathrm{b}_{1}=2\left[\frac{\sum Y \sin \frac{\pi x}{3}}{n}\right]=2\left[\frac{-3.4}{6}\right]=-1.13
$$

$$
\mathrm{b}_{1}=-1.13
$$

$$
\begin{aligned}
& \mathrm{b}_{2}=2\left[\frac{\sum Y \sin \frac{2 \pi x}{3}}{n}\right]=2\left[\frac{20.8}{6}\right]=6.9 \\
& \mathrm{~b}_{2}=6.9
\end{aligned}
$$

$(1)=>f(x)=\frac{41.66}{2}+\left(-8.33 \cos \frac{\pi x}{3}-1.13 \sin \frac{\pi x}{3}\right)+\left(-6.33 \cos \frac{2 \pi x}{3}+6.9 \sin \frac{2 \pi x}{3}\right)$

$$
f(x)=20.83+\left(-8.33 \cos \frac{\pi x}{3}-1.13 \sin \frac{\pi x}{3}\right)+\left(-6.33 \cos \frac{2 \pi x}{3}+6.9 \sin \frac{2 \pi x}{3}\right) .
$$

UNIT - III APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS

PART-A

1. Classify the p.d.e $x^{2} u_{x x}+2 x y u_{x y}+\left(1+y^{2}\right) u_{y y}-2 u_{x}=0$. [CO3-L2-Apr/May 2015]

$$
\begin{gathered}
\text { Ans: } A=x^{2}, B=2 x y \quad, C=1+Y^{2} \\
\Delta=B^{2}-4 A C=-4 x^{2}<0
\end{gathered}
$$

\therefore p.d.e is elliptic.
2. Classify $u_{\mathrm{xx}}=\mathrm{U}_{\mathrm{yy}}$. [CO3-L2-May/June 2016]

$$
\begin{gathered}
\text { Ans : } \mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=-1 \\
\Delta=\mathrm{B}^{2}-4 \mathrm{AC}=>0 \\
\therefore \text { p. d. e is hyperbolic. }
\end{gathered}
$$

3. Classify $4 u_{x x}+4 U_{x y}+U_{y y}-6 u_{x}-8 u_{y}-16 u=0$. [CO3-L2]

$$
\begin{gathered}
\text { Ans }: A=4, B=4, C-1 \\
\Delta=0
\end{gathered}
$$

\therefore p.d.e is parabolic
4. Classify the p.d.e $u_{x x}+4 U_{x y}+4 u_{y y}-12 u_{x}+u_{y}+7 u=x^{2}+y^{2}$. [CO3-L2]

$$
\begin{gathered}
\text { Ans: } \mathrm{A}=1, \mathrm{~B}=4, \mathrm{C}=4 \\
\Delta=\mathrm{B}^{2}-4 \mathrm{AC}=0 \\
\therefore \text { p.d.e is parabolic. }
\end{gathered}
$$

5. In wave equations $\frac{\partial^{2} y}{\partial t^{2}}=C^{2} \frac{\partial^{2} y}{\partial t^{2}}$ what is the physical meaning for C^{2} and What is the agent for vibration? [CO3-H2]

$$
\text { Ans : } \mathrm{C}^{2}=\frac{\mathrm{T}}{\mathrm{~m}}=\frac{\text { Tension }}{\text { mass per unit length }}
$$

6. Write the one dimensional heat equation. [CO3-L1]

$$
\text { Ans }: \frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\mathrm{a}^{2} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}
$$

7. What is the Fourier law of heat conduction. [CO3-H2]

$$
\begin{gathered}
\text { Ans : } \mathrm{Q}=-\mathrm{kA}\left(\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\right)_{\mathrm{x}} \\
\mathrm{Q}=\text { Quantity of heat fliwing } \\
\mathrm{k}=\text { thermal conductivity } \\
\mathrm{A}=\text { area of cross section } \\
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\text { temperature gradient }
\end{gathered}
$$

(The rate at which heat flows across an area A at distance x from one end of a bar is proportional to temperature gradient.)
8. Write all possible solutions for O.D.H.E. [CO3 - L1- May/June 2016]

$$
\begin{aligned}
& \text { Ans: }(\mathrm{i}) \mathrm{u}(\mathrm{x}, \mathrm{t})=\left(\mathrm{C}_{1} \mathrm{e}^{\mathrm{kx}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{kx}}\right) \mathrm{C}_{3 \mathrm{e}} \alpha^{2 \mathrm{~K}^{2} \mathrm{t}} \\
& \text { (ii) } \mathrm{u}(\mathrm{x}, \mathrm{t})=\left(\mathrm{C}_{1} \cos \mathrm{kx}+\mathrm{C}_{2} \sin k x\right) \mathrm{e}^{-} \alpha^{2} \mathrm{k}^{2} \mathrm{t} \\
& \text { (iii) } \mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{C}_{1} \mathrm{x}+\mathrm{C}^{2}
\end{aligned}
$$

9. A rod of length I is kept at T_{1}^{0} and T_{2}^{0} at the ends $x=0$ and $x=1$, the initial temperature distribution is \mathbf{u}_{0}, formulae the mathematical model. [CO3 - L3]

$$
\begin{gathered}
\text { Ans }: \frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\mathrm{a}^{2} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}} \\
\mathrm{u}(\mathrm{o}, \mathrm{t})=\mathrm{T}_{1}, \mathrm{u}(0, \mathrm{t})=\mathrm{T}_{2}, \mathrm{u}(\mathrm{x}, \mathrm{o})=\mathrm{u}_{0}
\end{gathered}
$$

10. A rod of length 20 cm whose one end is kept at $30^{\circ} \mathrm{C}$ and the other end at $70^{\circ} \mathrm{C}$, until steady state prevails, find the steady state prevails, find the steady state temperature. [CO3 - H2]

Ans: $u=a x+b$

$$
\begin{gathered}
x=o, u=30, b=30 \\
x=20, u=70, a=\frac{40}{20}=2 \\
u=2 x+30, \text { this is the steady state temp distribution }
\end{gathered}
$$

11. A bar of length 50 cm has its ends kept at $20^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until stead state prevails. Find the temperature t any point. [CO3-H2]

$$
\text { Ans }: u(x)=1.6 x+20
$$

12. A rod 30 cm long its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until stead state prevails. Find the temperature t any point. [$\mathrm{CO} 3-\mathrm{H} 2$]

$$
\text { Ans : } u=2 x+20
$$

13. State the two - dimensional Laplace equation. [CO3 - L1]

$$
\text { Ans: } \frac{\partial^{2} u}{\partial x^{2}}=a^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

14. Write three possible solutions o Laplace equations in two dimensions. [CO3-L1-Nov/Dec 2015]

$$
\begin{aligned}
& \text { Ans: (i) } u(x, y)=\left(C_{1} e^{k x}+C_{2} e^{-k x}\right)\left(C_{3} \cos k y+C_{4} \sin k y\right) \\
& \begin{array}{c}
\text { (ii) } u(x, y)=\left(C_{1} \cos k x+C_{2} \sin k x\right)\left(C_{3} e^{k y}+C_{4} e^{-k y}\right) \\
u(x, y)=\left(c_{1} x+C_{2}\right)\left(C_{3} y+C_{4}\right)
\end{array}
\end{aligned}
$$

15. In 2D heat equation or Laplace equation, What is the basic assumption. [CO3-H2] Ans : When the heat flow is along curves instead of stratight lines, the curves lying in parallel planes the flow is called two dimensional.
16. A rectangular plate is bounded by the lines $x=0, y=0, x=a, y=b$. Its surfaces are insulated. The temperature along $\mathrm{x}=0, \mathrm{y}=0$ are kept at $0^{\circ} \mathrm{C}$, other sides are at $100^{\circ} \mathrm{C}$. Write the B.C's . [CO3-L3]

$$
\begin{gathered}
\text { Ans: } \nabla^{2} u=0 \\
\text { (i) } u(0, y)-0 \\
\text { (ii) } u(x, 0)=0 \\
\text { (iii) } u(a, y)=100 \\
\text { (iv) } u(x, a)=100
\end{gathered}
$$

17. In steady state conditions derive the solution of one dimenslonal heat flow equation. [CO3-L3]

Ans. One dimensional heat equation is

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\mathrm{a}^{2} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}
$$

under steady state Ans : $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=0$
\therefore (1)becomes, Ans : $\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=0$

$$
\Rightarrow \mathrm{u}=\mathrm{ax}+\mathrm{b}
$$

18. In one dimensional heat equation $u_{t}=\mathbf{a}^{2} u_{x x}$. What does a^{2} stands for ? [CO3 - L1-May/June 2013]

Ans. $\mathrm{A}^{2}=$ Thermal diffusivity.
19. A tightly stretched string of length 2 L is fixed at both ends. The mid point of the string is displaced to a distance ' b ' and released from rest in this position write the Initial conditions. [CO3 - L1]

Ans. The initial conditions are

$$
\begin{gathered}
\text { (i) } \mathrm{t}=\mathrm{o},\left(\frac{\partial \mathrm{y}}{\partial \mathrm{t}}\right)=0 \\
\text { (ii) } \mathrm{t}=0, \mathrm{f}(\mathrm{x})=\left\{\frac{\mathrm{bx}}{\left.\frac{\mathrm{~b}}{\mathrm{~L}}(2 \mathrm{~L}-\mathrm{x}), \mathrm{L}<\mathrm{x}<2 \mathrm{~L}\right)} 0<\mathrm{x}<L\right.
\end{gathered}
$$

20. Write the initial conditions of the wave equation if the string has an initial displacement. [CO3 - L1-May/June 2014]

$$
\begin{gathered}
\text { Ans. }\left(\frac{\partial y}{\partial \mathrm{t}}\right)_{\mathrm{t}=0}=0 \\
\mathrm{y}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})
\end{gathered}
$$

21. State one dimensional heat equation with the initial and boundary conditions. [CO3 - L1]

Ans. The one dimensional heat equation is

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\mathrm{a}^{2} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}
$$

The boundary conditions are

$$
\begin{aligned}
& \mathrm{u}(\mathrm{l}, \mathrm{t})=\mathrm{k}_{1}^{0} \mathrm{C} V \mathrm{t}>0 \\
& \mathrm{u}(\mathrm{l}, \mathrm{t})=\mathrm{k}_{2}^{0} \mathrm{C} V \mathrm{t}>0 \\
& \mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}) \operatorname{in}(0, \mathrm{l})
\end{aligned}
$$

22. Write the boundary conditions and initial conditions for solving the vibration of string equation, if the string is subjected to initial displacement $f(x)$ and initial velocity $\mathrm{g}(\mathrm{x}) \quad$ [CO3-L1]

Ans. (A)y $(0, t)=0$
(b) $y(1, t)=0$
(c) $\frac{\partial y(x, 0)}{\partial t}=g(x)$
(d) $y(x, 0)=f(x)$
23. Solve the equation $\frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0$, given that $u(x, 0)=4 e^{-x}$ by the method of separation of variables. [CO3-H2]

$$
\text { Ans. We know that } u(x, y)=X(x) Y(y)=X Y
$$

$$
\begin{gathered}
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\mathrm{X}^{\prime} \mathrm{Y} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=\mathrm{XY}^{\prime} \\
\therefore 3 \mathrm{X}^{\prime} \mathrm{Y}+2 \mathrm{XY}^{\prime}=0 \\
\Rightarrow \quad \frac{3 X^{\prime}}{\mathrm{X}}+\frac{2 \mathrm{Y}^{\prime}}{\mathrm{Y}}=0 \\
\Rightarrow \frac{3 X^{\prime}}{\mathrm{X}}=-\frac{2 \mathrm{Y}^{\prime}}{\mathrm{Y}}=\mathrm{k}(\text { say })
\end{gathered}
$$

24. Write the initial conditions of the wave equation if the string has an initial displacement but no initial velocity. [CO3 - L1]

$$
\begin{gathered}
\text { Ans. }\left[\frac{\partial \mathrm{y}}{\partial \mathrm{t}}\right]_{\mathrm{t}=0}=0 \\
\mathrm{y}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})
\end{gathered}
$$

25. Classify the partial differential equation [CO3-L2]

$$
\begin{gathered}
\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=2 \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x} \partial \mathrm{y}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}=\mathrm{e}^{2 \mathrm{x}+3 \mathrm{y}} \\
\text { Ans. } \mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=1 \\
\Delta=\mathrm{B}^{2}-4 \mathrm{AC} \\
=4-4=0
\end{gathered}
$$

\therefore The p.d.e is parabolic.
26. A infinitely long uniform plate is bounded by the edges $x=0, x=l$ and an end right angles to them. The breadth of the edge $y=0$ is I and is maintained at $f(x)$. All the other edges are kept at $0^{\circ} \mathrm{C}$. Write down the boundary condition in mathematical form. [CO3 - L1]

$$
\begin{gathered}
\text { Ans. } u(0, y)=0 ; x=0 \\
u(l, y)=0 ; x=1 \\
u(x, y)=0 ; y \rightarrow \infty \\
u(x, 0)=f(x): y=0
\end{gathered}
$$

27. Classify the differential equation. [CO3-L2]

$$
\begin{gathered}
3 \frac{\partial^{2} u}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x} \partial \mathrm{y}}+6 \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}-2 \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{\partial \mathrm{u}}{\partial \mathrm{y}}-\mathrm{u}=0 \\
\text { Ans. } \mathrm{A}=3, \mathrm{~B}=4, \mathrm{C}=6 \\
\Delta=\mathrm{B}^{2}-4 \mathrm{AC}=16-72 \\
=-56<0
\end{gathered}
$$

\therefore The p.d.e is elliptic.
28. A rod of 5 cm long with insulated sides has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ respectively. Find the steady state temperature distribution of the rod. [CO3-H2Apr/May 2015]

Ans. $\mathrm{U}=\mathrm{x}+20$
29. Classify the pde $\left(1+x^{2}\right)\left(4+x^{2}\right) u_{x x}+\left(5+2 x^{2}\right) u_{x y}+u_{y y}=0$ [CO3 - L2]

Ans.

$$
\begin{gathered}
\mathrm{A}=\left(1+\mathrm{x}^{2}\right)\left(4+\mathrm{x}^{2}\right) \\
\mathrm{B}=\left(5+2 \mathrm{X}^{2}\right) \\
\mathrm{C}=1 \\
\mathrm{~B}^{2}-4 \mathrm{AC}=\left(5+2 \mathrm{x}^{2}\right)^{2}-4\left(1+\mathrm{x}^{2}\right)\left(4+\mathrm{x}^{2}\right) \\
=4>0
\end{gathered}
$$

\therefore It is hyperbolic.

PART B

Problem 1. A Tightly stretched sting of length of $2 \underline{1}$ is fastened at both ends the midpoint of the string is displaced by a distance ' b ' transversely and the string is released from rest in this position find expression for the transverse displacement of the string at any time during the subsequent motion . [CO3-H2]

Solution:-

$$
\text { Let } 2 /=L
$$

The equation the line $A D$

$$
\begin{aligned}
& (0,0) \quad(\mathrm{L} / 2, \mathrm{~b}) \\
& x_{1} y_{1} \quad x_{2} \quad y_{2} \\
& \frac{x-0}{0-L / 2}=\frac{y-0}{0-b} \\
& \frac{x}{-L / 2}=\frac{y}{-b} \\
& \frac{2 x}{L}=\frac{y}{b} \\
& \frac{2 b x}{L}=y \\
& \therefore y=\frac{2 b x}{L},\left(0, \frac{L}{2}\right)
\end{aligned}
$$

The equation of the line DB

$$
\begin{aligned}
&(\mathrm{L} / 2, \mathrm{~b})(\mathrm{L}, 0) \\
& \mathrm{X}_{1}, \mathrm{y}_{1} \mathrm{X}_{2} \\
& \mathrm{y}_{2} \\
& \frac{x-\frac{L}{2}}{\frac{L}{2}-L}=\frac{y-b}{b-0} \\
& \frac{x-\frac{L}{2}}{\frac{L}{2}}=\frac{y-b}{b}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 x-L / 2}{-L / 2}=\frac{y-b}{b} \\
& \frac{2 x-L}{-L}=\frac{y-b}{b} \\
& \frac{L-2 x}{L}=\frac{y-b}{b} \\
& \frac{L b-2 x b}{L}=y-b \\
& \frac{L b-2 x b}{L}+b=y \\
& \frac{2 L b-2 x b}{L}=y \\
& \frac{2 b}{L}(L-x)=y
\end{aligned}
$$

$$
\therefore y=\frac{2 b}{L}(L-x)(L / 2, L)
$$

$$
f(x)=\left\{\begin{array}{l}
\frac{2 b x}{L},(0, L / 2) \\
\frac{2 b}{L}(L-x)(L / 2, L)
\end{array}\right.
$$

The wave equation is

$$
\frac{\partial 2 y}{\partial t^{2}}=a^{2} \frac{\partial 2 y}{\partial x^{2}}
$$

The boundary conditions are
i. $\quad y(0, t)=0, t>0$
ii. $\quad y(L, t)=0, t>0$
iii. $\frac{\partial y}{\partial t}(x, 0)=0,(0, \mathrm{~L})$
iv. $y(x, o)=\left\{\begin{array}{l}\frac{2 b x}{L},(0, L / 2) \\ \frac{2 b}{L}(L-x),(L / 2, L)\end{array}\right.$

The correct solution is $\mathrm{y}(\mathrm{x}, \mathrm{t})=(A \cos p x+B \sin p x)(C \operatorname{cospat}+D \operatorname{sinpat})$
Apply cond (i) in equation (1)
$\mathrm{y}(0, \mathrm{t})=(\mathrm{A}+0)(C$ cospat $+D \operatorname{sinpat})=0$
$A(C$ cospat $+D \operatorname{sinpat})=0$
C cospat $+D$ sinpat $\neq 0$
$A=0$ sub in equation (1)
$(1) \Longleftrightarrow y(x, t)=B \operatorname{sinp} x(C$ cospat $+D \operatorname{sinpat})$

Apply cond x (ii) in equation (2)
$\mathrm{y}(\mathrm{L}, \mathrm{t})=B \operatorname{sinp} L(C$ cospat $+D \operatorname{sinpat})=0$
$\Longrightarrow \quad B \neq 0, C$ cospat $+D$ sinpat $\neq 0$

$$
\begin{aligned}
& \sin L L=0 \\
& \operatorname{sinp} L=\sin n \pi \\
& p L=n \pi \\
& P=n \pi / L \quad \text { sub in equation }(2)
\end{aligned}
$$

$(2) \Longleftrightarrow \mathrm{y}(\mathrm{x}, \mathrm{t})=B \sin \frac{n \pi^{x}}{L}\left(C \cos \frac{p \pi^{a t}}{L}+D \sin \frac{n \pi^{a t}}{L}\right)$
Diff w, r, to ' t '

$$
\begin{equation*}
\frac{\partial y}{\partial t}(x, t)=B \sin \frac{n \pi x}{L}\left(-C \sin \frac{n \pi a t}{L} \frac{n \pi a}{L}+D \cos \frac{n \pi a t}{L} \cdot \frac{n \pi a}{L}\right) \longrightarrow \tag{4}
\end{equation*}
$$

Apply cond (iii) in (4)

$$
\begin{aligned}
& \quad \frac{\partial y}{\partial t}(x, 0)=B \sin \frac{n \pi x}{L}\left(D \cos \frac{n \pi a t}{L} \cdot \frac{n \pi a}{L}\right)=0 \\
& B D \sin \frac{n \pi x}{L} \frac{n \pi a}{L}=0 \\
& B \neq 0, \sin \frac{n \pi x}{L} \neq 0 \frac{n \pi x}{L} \neq 0 \\
& \\
& \quad D=0 \text { sub in }(3)
\end{aligned}
$$

$(3) \Longleftrightarrow \mathrm{y}(\mathrm{x}, \mathrm{t})=B \sin \frac{n \pi x}{L}\left(C \cos \frac{n \pi a t}{L}\right)$

$$
\begin{aligned}
& =B C \sin \frac{n \pi x}{L}\left(C \cos \frac{n \pi a t}{L}\right) \\
& =b n \sin \frac{n \pi x}{L}\left(C \cos \frac{n \pi a t}{L}\right)
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{y}(\mathrm{x}, \mathrm{t})=\sum_{n=1}^{\infty} b n \sin \frac{n \pi x}{L} C \cos \frac{n \pi a t}{L} \tag{5}
\end{equation*}
$$

apply con of (iv) in (5)

$$
\mathrm{y}(\mathrm{x}, 0)=\sum_{n=1}^{\infty} b n \sin \frac{n \pi x}{L}=\left\{\begin{array}{l}
\frac{2 b x}{L},(0, L / 2) \\
\frac{2 b}{L}(L-x)(L / 2, L)
\end{array}\right.
$$

To find of bn , HRSS in (0,L)

$$
\begin{aligned}
\mathrm{bn} & =\frac{2}{L} \int_{O}^{L} f(x) \sin \frac{n \pi x}{L} \mathrm{dx} \\
& =\frac{2}{L} \frac{2 b}{L}\left\{\int_{0}^{L / 2} x \sin \frac{n \pi x}{L} \mathrm{dx}+\int_{\mathrm{L} / 2}^{\mathrm{L}}(\mathrm{~L}-x) \sin \frac{n \pi x}{L} \mathrm{dx}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{4 b}{L^{2}}\left\{\left[(x)\left(\frac{-\cos \frac{n \pi x}{L}}{n \pi / L}\right)-\left(\frac{-\sin \frac{n \pi x}{L}}{n 2 \pi^{2} / L^{2}}\right)\right]_{0}^{L / 2}\left[(L-x)\left(\frac{-\cos \frac{n \pi x}{L}}{\frac{n \pi}{L}}\right)-(-1)\left(\frac{-\sin \frac{n \pi x}{L}}{n 2 \pi^{2} / L^{2}}\right)\right]_{L / 2}^{L}\right\} \\
& =\frac{4 b}{L^{2}}\left[\frac{-L}{n \pi} \cdot \frac{L}{2} \cos \frac{n \pi}{2}+\frac{L^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}+\frac{L}{n \pi} \cdot \frac{L}{2} \cos \frac{n \pi}{2}+\frac{L^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}+\right] \\
& =\frac{4 b}{L^{2}}\left[2 \frac{L^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}\right] \\
& \quad \operatorname{bn}=\frac{8 b}{n^{2} \pi^{2}} \sin \frac{n \pi}{2} \\
& \mathrm{y}(\mathrm{x}, \mathrm{t})=\sum_{n=1}^{\infty}\left(\frac{8 b}{n^{2} \pi^{2}}\right) \sin \frac{n \pi}{2} \sin \frac{n \pi x}{L} \cos \frac{n \pi x}{L} \\
& \mathrm{put} \mathrm{~L}=21 \\
& \mathrm{y}(\mathrm{x}, \mathrm{t})=\sum_{n=1}^{\infty}\left(\frac{8 b}{n^{2} \pi^{2}}\right) \sin \frac{n \pi}{2} \sin \frac{n \pi x}{2 L} \cos \frac{n \pi a t}{2 L}
\end{aligned}
$$

Problem 2. A square plate is bounded by the lines $x=0, y=0, x=20$ and $y=20$ lts faces are insulated the temperature along the upper horizontal edge is given by $u(x, 20)=$ $x(20-x)$ when $0<x<20$ while the other three edges are kept at $0 \div C$ Find the steady state temperature in the plate. [CO3-H2-Nov/Dec 2016]

Solution:-

Let us take the sides of the plate be $I=20$ then $u(x, y)$ Satisfies the Laplace equation is $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ $x=1$

The boundary conditions are x
i) $u(0, y)=0$ for $0<x<1 \quad y=0$
ii) $u(I, y)=0$ for $0<y<I$
iii) $u(x, o)=0$ for $0<x<1$
iv) $\mathrm{u}(\mathrm{x}, \mathrm{I})=x(l-x)$ for $0<\mathrm{x}<1$

The suitable solution is

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{y})=(\mathrm{A} \operatorname{cospx}+\mathrm{B} \operatorname{sinpx})\left(\mathrm{C} e^{p y}+D e^{-p y}\right) \longrightarrow \tag{1}
\end{equation*}
$$

Applying (i) in (1)

$$
\begin{aligned}
& \mathrm{u}(0, \mathrm{y})=\mathrm{A}\left(\mathrm{C} e^{p y}+D e^{-p y}\right) \\
& \mathrm{O}=\mathrm{A} \quad\left(\mathrm{C} e^{p y}+D e^{-p y}\right)
\end{aligned}
$$

$$
\mathrm{A}=\mathrm{O} \quad \mathrm{C} e^{p y}+D e^{-p y} \neq 0
$$

Put $A=0$ in (1)
$\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{B} \operatorname{sinpx}\left(\mathrm{C} e^{p y}+D e^{-p y}\right)$
Applying (ii) in (I)

$$
\begin{gathered}
u(l, \mathrm{y})=\mathrm{B} \operatorname{sinp} /\left(\mathrm{C} e^{p y}+D e^{-p y}\right) \\
0=\mathrm{B} \operatorname{sinp} /\left(\mathrm{C} e^{p y}+D e^{-p y}\right) \\
\mathrm{B} \neq 0, \mathrm{C} e^{p y}+D e^{-p y} \neq 0 \\
\therefore \operatorname{sinp} /=0 \\
\operatorname{sinp} /=\sin n \pi \\
p l=n \pi \\
p=\frac{n \pi}{l}
\end{gathered}
$$

put $p=\frac{n \pi}{l}$ in (2)

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{B} \sin \left(\frac{n \pi x}{l}\right)\left[C e^{\frac{n \pi y}{l}}+D e^{-\frac{-n \pi y}{l}}\right] \longrightarrow \tag{3}
\end{equation*}
$$

Applying (iii) (3)

$$
\begin{gathered}
\mathrm{u}(\mathrm{x}, 0)=\mathrm{B} \sin \left(\frac{n \pi x}{l}\right)[\mathrm{C}+\mathrm{D}] \\
0=\mathrm{B} \sin \left(\frac{n \pi x}{l}\right)[\mathrm{C}+\mathrm{D}] \\
\mathrm{B} \sin \left(\frac{n \pi x}{l}\right) \neq 0 \\
\therefore C+D=0 \\
\mathrm{D}=-\mathrm{C}
\end{gathered}
$$

$$
\text { Put } D=-\sigma \quad \text { in (3) }
$$

$$
\begin{aligned}
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{B} \sin \left(\frac{n \pi x}{l}\right)\left[C e^{\frac{n \pi y}{l}}-C e^{-\frac{-n \pi y}{l}}\right] \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{BC} \sin \left(\frac{n \pi x}{l}\right)\left[e^{\frac{n \pi y}{l}}-e^{o-\frac{-n \pi y}{l}}\right] \quad e^{x}-e^{-x}=2 \sinh x \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{BC} \sin \left(\frac{n \pi x}{l}\right) 2 \sinh \left(\frac{n \pi y}{l}\right) \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=b_{n} \sin \left(\frac{n \pi x}{l}\right) \sinh \left(\frac{n \pi y}{l}\right) \quad \text { here } 2 \mathrm{BC}=\mathrm{b}_{\mathrm{n}}
\end{aligned}
$$

The most general solution is

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{y})=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right) \sinh \left(\frac{n \pi y}{l}\right) \tag{4}
\end{equation*}
$$

Applying (iv) in (4)

$$
\begin{align*}
& \mathrm{u}(\mathrm{x}, l)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right) \sinh \left(\frac{n \pi l}{l}\right) \\
& x(l-x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right) \sin \mathrm{hn} \pi \tag{5}
\end{align*}
$$

This is half range sine series in (O, l)
$x(l-x)=\sum_{n=1}^{\infty} b_{n} \sin \mathrm{hn} \pi \sin \left(\frac{n \pi x}{l}\right)$
To find b_{n}

$$
\begin{aligned}
& \text { bn }(\sin \mathrm{hn} \pi)=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) \mathrm{dx} \\
& \text { bn }(\sin \mathrm{hn} \pi)=\frac{2}{l} \int_{0}^{l}\left(l x-x^{2}\right) \sin \left(\frac{n \pi x}{l}\right) \mathrm{dx} \\
& =\frac{2}{l}\left[\left(\left(l x-x^{2}\right)\left(-\cos \frac{\frac{n \pi x}{l}}{n \pi / l}\right)-(l-2 x)\left(-\sin \frac{\frac{n \pi x}{l}}{\frac{n n^{2} \pi^{2}}{l^{2}}}\right)+(-2)\left(\cos \frac{\frac{n \pi x}{l}}{\frac{n_{3} \pi^{3}}{l^{3}}}\right)\right]_{o}^{l}\right.
\end{aligned}
$$

bn $(\sinh n \pi)=\frac{2}{l}\left[-2 \frac{l^{3}}{n^{3} \pi^{3}} \cos n \pi+2 \frac{l^{3}}{n^{3} \pi^{3}}\right]$

$$
\begin{aligned}
=\frac{2}{l} & .2 \frac{l^{3}}{n^{3} \pi^{3}}[\cos n \pi+1] \\
& =\frac{4 l^{2}}{n^{3} \pi^{3}}\left[-(-1)^{n}+1\right] \\
& =\frac{4 l^{2}}{n^{3} \pi^{3}}\left[1-(-1)^{n}\right]
\end{aligned}
$$

When,

$$
\begin{aligned}
& \mathrm{n} \text { is even } \Longrightarrow \mathrm{b}_{\mathrm{n}}=0 \\
& \mathrm{n} \text { is odd } \Longleftrightarrow \mathrm{b}_{\mathrm{n}}(\operatorname{sinhn} \pi)=\frac{8 l^{2}}{n^{3} \pi^{3}} \\
& \mathrm{~b}_{\mathrm{n}}=\frac{8 l^{2}}{n^{3} \pi^{3}} \cdot \frac{1}{\operatorname{sinhn} \pi} \\
& \mathrm{~b}_{\mathrm{n}}=\frac{8 l^{2}}{n^{3} \pi^{3} \operatorname{sinhn} \pi}
\end{aligned}
$$

sub b_{n} in equation (4)
$\begin{aligned} & \mathrm{u}(\mathrm{x}, \mathrm{y})=\sum_{n=1,3}^{\infty}\left(\frac{8 l^{2}}{n^{3} \pi^{3} \sinh n}\right) \sin \frac{n \pi x}{l} \sinh \frac{n \pi y}{l} \\ & \text { put } \quad l=20\end{aligned}$

$$
\mathrm{u}(\mathrm{x}, \mathrm{y})=\sum_{n=1,3}^{\infty}\left(\frac{3200}{n^{3} \pi^{3} \sinh n \pi}\right) \sin \frac{n \pi x}{20} \sinh \frac{n \pi y}{20}
$$

Problem 3. A tightly stretched string with fixed end points $\boldsymbol{x}=0 \& x=l$ is initially in a position given by $y(x, 0)=y_{0} \sin ^{3} \frac{\pi x}{l}$. If it is released from rest from this position. Find the displacement ' \boldsymbol{y} 'at any distance ' \boldsymbol{x} ' from one end at any time , \boldsymbol{t},. [CO3-H2- Nov/Dec 2016]

Given: $y(x, 0)=y_{0} \sin ^{3} \frac{\pi x}{l}=\frac{y_{0}}{4}\left[3 \sin \frac{\pi x}{1}-\sin \frac{3 \pi x}{l}\right]$

$$
\left[\because \sin ^{3} x=\frac{1}{4}(3 \sin x-\sin 3 x)\right]
$$

Solution:

The wave equation is $\frac{\partial^{2} \mathrm{y}}{\partial \mathrm{t}^{2}}=\mathrm{a}^{2} \frac{\partial^{2} \mathrm{y}}{\partial \mathrm{x}^{2}}$
The boundary conditions are,
i) $y(0, t)=0, t>0$
ii) $y(l, t)=0, t>0$
iii) $\frac{\partial y}{\partial t}(x, 0)=0,0 \leq x \leq 1$
iv) $y(x, 0)=f(x)=\left[3 \sin \frac{\pi x}{l}-\sin \frac{3 \pi x}{l}\right], 0 \leq x \leq 1$

The correct solution is
$y(x, t)=(A \cos P x+B \sin P x)(C \cos P a t+D \sin P a t) \rightarrow(1)$
Apply cond. (i)in eqn. (1)
$(1) \Rightarrow y(0, t)=(A+0)(C \cos$ Pat $+D \sin$ Pat $)=0$
$A(C \cos P a t+D \sin P a t)=0$
$\Rightarrow \mathrm{C} \cos \mathrm{Pat}+\mathrm{D} \sin \mathrm{Pat} \neq 0$
$\therefore \mathrm{A}=0$ sub. in (1)
$y(x, t)=B \sin P x(C \cos P a t+D \sin P a t) \rightarrow(2)$
Apply cond. (ii)in eqn. (2)
$y(x, t)=B \sin P l(C \cos P a t+D \sin P a t)=0$
$\Rightarrow \mathrm{B} \sin \mathrm{Pl}(\mathrm{C} \cos \mathrm{Pat}+\mathrm{D} \sin \mathrm{Pat})=0$
$\Rightarrow C \cos$ Pat $+D \sin$ Pat $\neq 0, B \neq 0$
$\therefore \sin \mathrm{Pl}=0=\sin \mathrm{n} \pi$
$\Rightarrow \mathrm{Pl}=\mathrm{n} \pi$
$\mathrm{P}=\frac{\mathrm{n} \pi}{\mathrm{l}}$ sub. in (2)
$y(x, t)=B \sin \frac{n \pi x}{l}\left(C \cos \frac{n \pi a t}{l}=D \sin \frac{n \pi a t}{l}\right) \rightarrow(3)$
Diff. w, r to 't' in (3),
$\frac{\partial y}{\partial t}(x, t)=B \sin \frac{n \pi x}{l}\left[\left(-C \sin \frac{n \pi a t}{l} \cdot \frac{n \pi a}{l}\right)+\left(D \cos \frac{n \pi a t}{l} \cdot \frac{n \pi a}{l}\right)\right] \rightarrow(4)$
Apply cond. (iii)in eqn. (4)
$(4) \Rightarrow \frac{\partial y}{\partial t}(x, 0)=B \sin \frac{n \pi x}{l}\left(0+D \frac{n \pi a}{l}\right)=0$
$B \sin \frac{n \pi x}{l}\left(D \frac{n \pi a}{l}\right)=0$
$\Rightarrow B \neq 0, \frac{\mathrm{n} \pi \mathrm{a}}{\mathrm{l}} \neq 0, \sin \frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{l}} \neq 0$
$\therefore \mathrm{D}=0$ sub. in (3)
$y(x, t)=B \sin \frac{n \pi x}{l}\left(C \cos \frac{n \pi a t}{l}\right)=B C \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi a t}{l}$
$=\mathrm{b}_{\mathrm{n}} \sin \frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{l}} \cdot \cos \frac{\mathrm{n} \pi a \mathrm{at}}{\mathrm{l}}$
$y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi a t}{l}$
$y(x, t)=b_{1} \sin \frac{\pi x}{l} \cdot \cos \frac{\pi a t}{l}+b_{2} \sin \frac{2 \pi x}{l} \cdot \cos \frac{2 \pi a t}{l}+\cdots$
Apply cond. (iv)in eqn. (5)
$y(x, 0)=b_{1} \sin \frac{\pi x}{l}+b_{2} \sin \frac{2 \pi x}{l}+\cdots=\frac{y_{0}}{4}\left[3 \sin \frac{\pi x}{l}-\sin \frac{3 \pi x}{l}\right]$
$b_{1} \sin \frac{\pi x}{l}+b_{2} \sin \frac{2 \pi x}{l}+b_{3} \sin \frac{3 \pi x}{l}=\frac{y_{0}}{4}\left[3 \sin \frac{\pi x}{l}-\sin \frac{3 \pi x}{l}\right]$
Equating coefficients on both the sides,
$b_{1}=\frac{3 y_{0}}{4}, b_{2}=0, b_{3}=-\frac{y_{0}}{4} \operatorname{sub} . \operatorname{in}(5)$
(5) $\Rightarrow y(x, t)=\frac{3 y_{0}}{4} \sin \frac{\pi x}{1} \cdot \cos \frac{\pi a t}{1}-\frac{y_{0}}{4} \sin \frac{3 \pi x}{1} \cdot \cos \frac{3 \pi a t}{1}$.

Problem 4. A string is tightly stretched \& its ends are fastened at two points $\boldsymbol{x}=\mathbf{0}$ \& $x=l$.The midpoint of the string is displaced transversely through a small distance ' b ' \& the string is released from rest in that position. Find an expression for the transverse displacement of the string at any time during the motion. [CO3-H2]

Given:

The eqn. of the line $A D$
$(0,0)(l / 2, b)$
$x_{1} y_{1} \quad x_{2} y_{2}$
$\frac{x-x_{1}}{x-x_{2}}=\frac{y-y_{1}}{y-y_{2}} \Rightarrow \frac{x-0}{0-l / 2}=\frac{y-0}{0-b}$

$\frac{x}{-l / 2}=\frac{y}{-b}$
$\frac{2 x}{l}=\frac{y}{b} \Rightarrow y=\frac{2 b x}{l}=f(x)$
$\therefore f(x)=\frac{2 b x}{l},(0, l / 2)$

The eqn. of the line DB is $\begin{gathered}(l / 2, b)(l, 0) \\ x_{1} y_{1} x_{2} y_{2}\end{gathered}$
$\frac{x-l / 2}{l / 2-l}=\frac{y-b}{b} \Rightarrow \frac{\frac{2 x-l}{z}}{-l / z}=\frac{y-b}{b}$
$\Rightarrow \frac{l-2 x}{l}=\frac{y-b}{b} \Rightarrow \frac{l b-2 b x}{l}=y-b$
$\Rightarrow y=\frac{l b-2 b x}{l}+b \Rightarrow y=\frac{2 l b-2 b x}{l}$
$\Rightarrow \frac{2 b}{l}(l-x)=y=f(x)$
$\therefore f(x)=\left\{\begin{array}{c}2 b x / l,(0, l / 2) \\ 2 b / l(l-x),(l / 2, l)\end{array}\right.$
The wave equation is $\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}$
The boundary conditions are,
i) $y(0, t)=0, t>0$
ii) $y(l, t)=0, t>0$
iii) $\frac{\partial y}{\partial t}(x, 0)=0,0 \leq x \leq l$
iv) $y(x, 0)=f(x)=\left\{\begin{array}{c}2 b x / l,(0, l / 2) \\ 2 b / l(l-x),(l / 2, l)\end{array}, 0 \leq x \leq l\right.$

The correct solution is
$y(x, t)=(A \cos P x+B \sin P x)(C \cos P a t+D \sin P a t) \rightarrow(1)$
Apply cond. (i)in eqn. (1)
(1) $\Rightarrow y(0, t)=A(C \cos P a t+D \sin P a t)=0$
$\Rightarrow C \cos P a t+D \sin P a t \neq 0$
$\therefore A=0$ sub.in(1)
$y(x, t)=B \sin P x(C \cos P a t+D \sin P a t) \rightarrow(2)$

Apply cond. (ii)in eqn. (2)
$y(x, t)=B \sin P l(C \cos P a t+D \sin P a t)=0$
$\Rightarrow C \cos P a t+D \sin P a t \neq 0, B \neq 0$
$\therefore \sin P l=0=\sin n \pi$
$\Rightarrow P l=n \pi$
$P=\frac{n \pi}{l} \operatorname{sub} \cdot i n(2)$
$y(x, t)=B \sin \frac{n \pi x}{l}\left(C \cos \frac{n \pi a t}{l}+D \sin \frac{n \pi a t}{l}\right) \rightarrow(3)$

Diff. w, r to ' t ' in (3),
$\frac{\partial y}{\partial t}(x, t)=B \sin \frac{n \pi x}{l}\left[\left(-C \sin \frac{n \pi a t}{l} \cdot \frac{n \pi a}{l}\right)+\left(D \cos \frac{n \pi a t}{l} \cdot \frac{n \pi a}{l}\right)\right] \rightarrow(4)$
Apply cond. (iii)in eqn. (4)
(4) $\Rightarrow \frac{\partial y}{\partial t}(x, 0)=B \sin \frac{n \pi x}{l}\left(0+D \frac{n \pi a}{l}\right)=0$
$B \sin \frac{n \pi x}{l}\left(D \frac{n \pi a}{l}\right)=0$
$\Rightarrow B \neq 0, \frac{n \pi a}{l} \neq 0, \sin \frac{n \pi x}{l} \neq 0$
$\therefore D=0$ sub.in (3)
$y(x, t)=B \sin \frac{n \pi x}{l}\left(C \cos \frac{n \pi a t}{l}\right)=B C \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi a t}{l}$
$=b_{n} \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi a t}{l}$
$y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi a t}{l} \rightarrow(5)$

Apply cond. (iv)in eqn. (5)
$y(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}=\left\{\begin{array}{c}2 b x / l,(0, l / 2) \\ 2 b / l(l-x),(l / 2, l)\end{array}\right.$

To find b_{n}, HRSS in $(0, l)$,
$b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x=\frac{2}{l}\left[\frac{2 b}{l} \int_{0}^{\frac{l}{2}} x \sin \frac{n \pi x}{l} d x+\frac{2 b}{l} \int_{\frac{l}{2}}^{l}(l-x) \sin \frac{n \pi x}{l} d x\right]$
$=\frac{2}{l} \cdot \frac{2 b}{l}\left\{\left[(x)\left(-\frac{\cos n \pi x / l}{n \pi / l}\right)-\left(-\frac{\sin n \pi x / l}{n^{2} \pi^{2} / l^{2}}\right)\right]_{0}^{\frac{l}{2}}\right.$
$+\left[(l-x)\left(-\frac{\cos n \pi x / l}{n \pi / l}\right)-(-1)\left(-\frac{\sin n \pi x / l}{n^{2} \pi^{2} / l^{2}}\right)\right]_{\frac{l}{2}}^{l}$
$=\frac{4 b}{l^{2}}\left[-\frac{l}{n \pi} \cdot \frac{l}{2} \cos \frac{n \pi}{l} \cdot \frac{l}{2}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{l} \cdot \frac{l}{2}+\frac{l}{n \pi} \cdot \frac{l}{2} \cos \frac{n \pi}{l} \cdot \frac{l}{2}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{l} \cdot \frac{l}{2}\right]$
$=\frac{4 b}{l^{2}}\left[2 \frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}\right]=\frac{8 b}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}$
$\Rightarrow b_{n}=\frac{8 b}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}$ sub.in (5),
(5) $\Rightarrow y(x, t)=\sum_{n=1}^{\infty}\left(\frac{8 b}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}\right) \cdot \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi a t}{l}$

Problem 5. A tightly stretched string with fixed end points $\boldsymbol{x}=0 \& x=l$ is initially at rest in its position. If it is set vibrating givingeach point at a velocity $\lambda x(l-x)$. Find the displacement at any point at any time ' \boldsymbol{t}^{\prime}. [CO3-H2-Nov/Dec 2014]

Given: $f(x)=\lambda x(l-x)=\lambda\left(l x-x^{2}\right)$
The wave equation is
$\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}$
The boundary conditions are,
i) $y(0, t)=0, t>0$
ii) $y(l, t)=0, t>0$
iii) $y(x, 0)=0,0 \leq x \leq l$
iv) $\frac{\partial y}{\partial t}(x, 0)=f(x)=\lambda\left(l x-x^{2}\right), 0 \leq x \leq l$

The correct solution is
$y(x, t)=(A \cos P x+B \sin P x)(C \cos P a t+D \sin P a t) \rightarrow(1)$
Apply cond. (i)in eqn. (1)
(1) $\Rightarrow y(0, t)=A(C \cos P a t+D \sin P a t)$
$\Rightarrow C \cos P a t+D \sin P a t \neq 0$
$\therefore A=0$ sub.in (1)
$y(x, t)=B \sin P x(C \cos P a t+D \sin P a t) \rightarrow(2)$
Apply cond. (ii)in eqn. (2)
$y(l, t)=B \sin P l(C \cos P a t+D \sin P a t)=0$
$\Rightarrow B \sin P l(C \cos P a t+D \sin P a t)=0$
$\Rightarrow C \cos P a t+D \sin P a t \neq 0, B \neq 0$
$\therefore \sin P l=0=\sin n \pi$
$\Rightarrow P l=n \pi$
$P=\frac{n \pi}{l} \operatorname{sub} \cdot i n(2)$
(2) $\Rightarrow y(x, t)=B \sin \frac{n \pi x}{l}(C \cos P a t+D \sin P a t) \rightarrow(3)$

Apply cond. (iii)in eqn. (3)
$y(x, 0)=B \sin \frac{n \pi x}{l}(c+0)=0$
$\Rightarrow B \sin \frac{n \pi x}{l} . c=0$
$\Rightarrow B \neq 0, \sin \frac{n \pi x}{l} \neq 0, \quad \therefore C=0$ sub.in (3)
$y(x, t)=B \sin \frac{n \pi x}{l}\left(D \sin \frac{n \pi a t}{l}\right)$
$y(x, t)=B D \sin \frac{n \pi x}{l} \cdot \sin \frac{n \pi a t}{l}$
$y(x, t)=b_{n} \sin \frac{n \pi x}{l} \cdot \sin \frac{n \pi a t}{l}$
$y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi a t}{l} \rightarrow(4)$

Diff. w, r to ${ }^{\prime} t{ }^{\prime}$
$\frac{\partial y}{\partial t}(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi a t}{l}\left(\frac{n \pi a}{l}\right) \rightarrow(5)$
Apply cond. (iv)in eqn. (5)
$\frac{\partial y}{\partial t}(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \frac{n \pi a}{l}=\lambda\left(l x-x^{2}\right)$
$\Rightarrow \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \frac{n \pi a}{l}=\lambda\left(\frac{l n}{x}-2 \frac{n^{2^{2}}}{x^{2}}\right)$

To find b_{n}, HRSS in $(0, l)$,
$b_{n}=\frac{2 \lambda}{l} \int_{0}^{l}\left(l x-x^{2}\right) \sin \frac{n \pi x}{l} d x$
$=\frac{2 \lambda}{l}\left(l x-x^{2}\right)\left[\left(-\frac{\cos n \pi x / l}{n \pi / l}\right)-(l-2 x)\left(-\frac{\sin n \pi x / l}{n^{2} \pi^{2} / l^{2}}\right)+(-2)\left(-\frac{\cos n \pi x / l}{n^{3} \pi^{3} / l^{3}}\right)\right]_{0}^{l}$
$=\frac{2 \lambda}{l} \cdot \frac{2 l^{3}}{n^{3} \pi^{3}}\left[1-(-1)^{n}\right]=\frac{4 \lambda l^{2}}{n^{3} \pi^{3}}\left[1-(-1)^{n}\right]$

When ' n ' is even, $b_{n}=0$
' n^{\prime} is odd, $b_{n}=\frac{8 \lambda l^{2}}{n^{3} \pi^{3}}$
$b_{n} \cdot \frac{n \pi a}{l}=\frac{8 \lambda l^{2}}{n^{3} \pi^{3}} \Rightarrow b_{n}=\frac{8 \lambda l^{3}}{n^{4} \pi^{4} a}$ sub.in (4).
(4) $\Rightarrow y(x, t)=\sum_{n=1,3}^{\infty}\left(\frac{8 \lambda l^{3}}{n^{4} \pi^{4} a}\right) \cdot \sin \frac{n \pi x}{l} \cdot \sin \frac{n \pi a t}{l}$

Problem 6. A rectangular plate with insulated surface is 10 cm wide and compared to its width that it may be considered infinite in length without introducing appreciable error. The temperature at short edge $\mathrm{y}=0$ is given by
$u=\left\{\begin{array}{c}20 x, 0 \leq x \leq 5 \\ 20(10-x), 5 \leq x \leq 10\end{array}\right.$
And all the other three edges are kept at $0^{\circ} \mathbf{c}$. Find the steady state temperature at any point in the plate. [CO3-H2-May/Jun 2013]

Solution:

Let $10=l$
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
The boundary conditions are,
i) $u(0, y)=0$, for all y
ii) $u(l, y)=0$, for all y
iii) $u(x, \infty)=0,0 \leq x \leq l$

iv) $u(x, 0)=\left\{\begin{array}{c}20 x, 0 \leq x \leq l / 2 \\ 20(10-x), l / 2 \leq x \leq l\end{array}\right.$

The correct solution is
$u(x, y)=(A \cos P x+B \sin P x)\left(C e^{p y}+D e^{-p y}\right) \rightarrow(1)$
Apply cond. (i)in eqn. (1)
$u(0, y)=A\left(C e^{p y}+D e^{-p y}\right)=0$
$\Rightarrow C e^{p y}+D e^{-p y} \neq 0$
$\therefore A=0$ sub.in (1)
(1) $\Rightarrow u(x, y)$
$u(x, y)=B \sin P x\left(C e^{p y}+D e^{-p y}\right) \rightarrow(2)$

Apply cond. (ii)in eqn. (2)
$u(l, y)=B \sin P l\left(C e^{p y}+D e^{-p y}\right)$
$0=B \sin P l\left(C e^{p y}+D e^{-p y}\right)$
$\Rightarrow B \neq 0, C e^{p y}+D e^{-p y} \neq 0$
$\therefore \sin P l=0=\sin n \pi$
$\Rightarrow P l=n \pi$
$\Rightarrow P=\frac{n \pi}{l} \operatorname{sub} \cdot i n(2)$
$u(x, y)=B \sin \frac{n \pi x}{l}\left(C e^{n \pi y / l}+D e^{-n \pi y / l}\right) \rightarrow(3)$
Apply cond. (iii)in eqn. (3)
$u(x, \infty)=B \sin \frac{n \pi x}{l}\left(C e^{\infty}+D e^{-\infty}\right)=0$
$\Rightarrow B \sin \frac{n \pi x}{l} . C=0$
$\Rightarrow B \neq 0, \quad \sin \frac{n \pi x}{l} \neq 0$
$\therefore C=0$ sub.in (3)
$u(x, y)=B \sin \frac{n \pi x}{l}\left(D e^{-n \pi y / l}\right)$
$=B D \sin \frac{n \pi x}{l} \cdot e^{-n \pi y / l}=b_{n} \frac{n \pi x}{l} e^{-n \pi y / l}$
$u(x, y)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot e^{-n \pi y / l} \rightarrow(4)$

Apply cond. (iv)in eqn. (4)
$y(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}\left\{\begin{array}{c}20 x,(0, l / 2) \\ 20(l-x),(l / 2, l)\end{array}\right.$

To find b_{n}, HRSS in $(0, l)$,
$b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x$
$=\frac{2}{l} \cdot 20\left[\int_{0}^{l} x \sin \frac{n \pi x}{l} d x+\int_{\frac{l}{2}}^{l}(l-2 x) \sin \frac{n \pi x}{l} d x\right]$
$=\frac{40}{l}(x)\left[\left(-\frac{\cos n \pi x / l}{n \pi / l}\right)-\left(-\frac{\sin n \pi x / l}{n^{2} \pi^{2} / l^{2}}\right)\right]_{0}^{\frac{l}{2}}+\left[(l-x)\left(-\frac{\cos n \pi x / l}{n \pi / l}\right)-(-1)\left(-\frac{\sin n \pi x / l}{n^{2} \pi^{2} / l^{2}}\right)\right]_{\frac{l}{2}}^{l}$
$=\frac{40}{l}\left[-\frac{l}{n \pi} \cdot \frac{l}{2} \cos \frac{n \pi}{2}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}+\frac{l}{n \pi} \cdot \frac{l}{2} \cos \frac{n \pi}{2}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}\right]$
$=\frac{40}{l} \cdot \frac{2 l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}$
$b_{n}=\frac{80 l}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}$ sub.in (4)
$u(x, y)=\sum_{n=1}^{\infty} \frac{80 l}{n^{2} \pi^{2}} \sin \frac{n \pi}{2} \sin \frac{n \pi x}{l} \cdot e^{-n \pi y / l}$
Put $l=10$
$u(x, y)=\sum_{n=1}^{\infty} \frac{800}{n^{2} \pi^{2}} \sin \frac{n \pi}{2} \sin \frac{n \pi x}{10} \cdot e^{-n \pi y / 10}$.

UNIT - IV FOURIER TRANSFORMS

PART -A

1. State the inversion formula for a Fourier Transform. [CO4 - L1]

Solution:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F[f(x)] e^{-i s x} d s
$$

2. State the convolution theorem of Fourier Transform. [CO4 - L1]

Solution:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F[f(x)] e^{-i s x} d s
$$

3. Find Fourier cosine Transform of $e^{-a x}$. [CO4-H2]

Solution:

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F[f(x)] e^{-i s x} d s \\
& F_{C}\left[e^{-a x}\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \cos s x d x \\
& F_{C}\left[e^{-a x}\right]=\sqrt{\frac{2}{\pi}}\left[\frac{a}{a^{2}+s^{2}}\right]
\end{aligned}
$$

4. Prove that $F[f(x-a)]=e^{i o s} F(s) . \quad[C O 4-H 2-A p r / M a y ~ 2015]$

Solution:

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F[f(x)] e^{-i s x} d s \\
& F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i s x} d x \\
& F[f(x-a)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-a) e^{-i s x} d x \\
& \text { Put } x-a=t \quad \Rightarrow \quad x=t+a \\
& \Rightarrow d x=d t \\
& \therefore F[f(x-a)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i s(t+a)} d t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i s t} e^{-i s a} d t \\
& =\frac{e^{-i s a}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i s t} d t \\
& F[f(x-a)]=e^{i s a} F(s) \cdot \text { Hence proved }
\end{aligned}
$$

5. Find the Fourier sine transform of $\frac{1}{x}$. \quad [CO4-H2-Apr/May 2015]

Solution: $\quad F_{S}[1 / x]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{x} \sin s x d x$

$$
=\sqrt{\frac{2}{\pi}} \frac{\pi}{2} \quad\left[\because \int_{0}^{\infty} \frac{\sin s x}{x} d x=\pi / 2\right]
$$

$$
\therefore \quad F_{S}[1 / x]=\sqrt{\pi / 2}
$$

6. State the Fourier Integral theorem. [CO4 - L1-May/June 2016]

Solution:

The Fourier Integral theorem of $f(x)$ in the interval $(-l, l)$ is

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \lambda(t-x) d x d \lambda .
$$

7. Write down the Fourier transform pair.
[CO4 - L1]

Solution:

$$
\begin{aligned}
& F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x \\
& \quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F[f(x)] e^{-i s x} d s
\end{aligned}
$$

8. Find the Fourier sine transform of e^{-x}. [CO4-H2]

Solution:

$$
\begin{gathered}
F_{S}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x \\
F_{S}\left[e^{-x}\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-x} \sin s x d x \\
\therefore F_{S}\left[e^{-x}\right]=\sqrt{\frac{2}{\pi}}\left(\frac{s}{s^{2}+1}\right)
\end{gathered}
$$

9. Write down the Fourier sine transform pair . [CO4 - L1]

Solution: $\quad F_{S}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x$

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{S}[f(x)] \sin s x d s
$$

10. Write down the Fourier cosine transform pair of formulae. [CO4 - L1]

Solution: $\quad F_{C}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos s x d x$

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{C}[f(x)] \cos s x d s
$$

11. Prove that $F\left[e^{i a x} f(x)\right]=F(s+a)$, where $F[f(x)]=F(s)$. [CO4-H2]

Solution: $\quad F\left[e^{i a x} f(x)\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i a x} f(x) e^{i s x} d x$

$$
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i(s+a) x} d x
$$

$$
F\left[e^{i a x} f(x)\right]=F(s+a)
$$

12. Prove that $F[f(a x)]=\frac{1}{a} F(s / a), a>0$.
[CO4 - H2- Nov/Dec 2015]
Solution: $\quad F[f(a x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(a x) e^{i s x} d x$
13. Find Fourier cosine transform of e^{-x}.
[CO4-H2]
Solution: $\quad F_{C}\left[e^{-x}\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-x} \cos s x d x$

$$
F_{C}\left[e^{-x}\right]=\sqrt{\frac{2}{\pi}}\left(\frac{1}{s^{2}+1}\right)
$$

14. Find (a) $F\left[x^{n} f(x)\right]$ (b) $F\left[\frac{d^{n} f(x)}{d x^{n}}\right]$ interms of Fourier transform of $f(x)$. [CO4-H2]
(a) $F\left[x^{n} f(x)\right]=(-i)^{n} \frac{d^{n}}{d s^{n}} F(s)$
(b) $F\left[\frac{d^{n}}{d x^{n}} f(x)\right]=(-i s)^{n} F(s)$
(c)
15. Find the Fourier transform of $f(x)=\left\{\begin{array}{cl}1, & |x|<a \\ 0, & |x|>a>0\end{array}\right.$

Solution:

$$
\begin{aligned}
& \text { Put } a x=t \quad \Rightarrow \quad x=t / a \\
& a d x=d t \quad \Rightarrow \quad d x=d t / a \\
& \therefore F[f(a x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i s(t / a)} \frac{d t}{a} \\
& =\frac{1}{a} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i(s / a) t} d t \\
& F[f(a x)]=\frac{1}{a} F(S / a)
\end{aligned}
$$

$$
\begin{gathered}
F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-a}^{a} e^{i s x} d x \\
=\frac{1}{\sqrt{2 \pi}} \int_{-a}^{a}(\cos s x+i \sin s x) d x \\
=\frac{1}{\sqrt{2 \pi}} \int_{-a}^{a} \cos s x d x=\frac{1}{\sqrt{2 \pi}} 2 \cdot \int_{-a}^{a} \cos s x d x \\
F[f(x)]=\sqrt{\frac{2}{\pi}}\left[\frac{\sin s x}{s}\right]_{0}^{a}=\sqrt{\frac{2}{\pi}}\left[\frac{\sin s a}{s}\right]
\end{gathered}
$$

16. If $F(s)$ us the Fourier transform of $f(x)$. Write the formula for the Fourier transform of $f(x) \cos a x$ in terms of F.
[CO4 - L1]

Solution:

$$
F[f(x) \cos a x]=1 / 2[F(s+a)+F(s-a)]
$$

17. If $F_{S}(s)$ is the Fourier sine Transform of $f(x)$, show that $F_{S}[f(x) \cos a x]=$ $\frac{1}{2}\left[F_{s}(s+a)+F_{s}(s-a)\right] . \quad[C O 4-\mathrm{H} 2]$
Solution: $\quad F_{S}[f(x) \cos a x]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos a x \sin s x d x$

$$
\begin{gathered}
\left.=\frac{1}{2} \cdot \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin (s+a) x+\sin (s-a) x\right] d x \\
=\frac{1}{2}\left[\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin (s+a) x d x+\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin (s-a) x d x\right]
\end{gathered}
$$

$$
F_{S}[f(x) \cos a x]=\frac{1}{2}\left[F_{S}(s+a)+F_{S}(s-a)\right]
$$

18. Solve the integral equation $\int_{0}^{\infty} f(x) \cos \lambda x d x=e^{-\lambda}$.
[CO4-H2]
Solution: Given: $\int_{0}^{\infty} f(x) \cos \lambda x d x=e^{-\lambda}$

$$
\begin{gathered}
\sqrt{\frac{2}{\pi} \int_{0}^{\infty} f(x) \cos \lambda x d x=\sqrt{\frac{2}{\pi}} e^{-\lambda}} \begin{aligned}
& F_{C}[f(x)]=\sqrt{\frac{2}{\pi}} e^{-\lambda} \\
& \therefore f(x)=F_{C}^{-1}\left[\sqrt{\frac{2}{\pi}} e^{-\lambda}\right]=\sqrt{\frac{2}{\pi}} F_{C}^{-1}\left[e^{-\lambda}\right] \\
&=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-\lambda} \cos \lambda x d x \\
& f(x)=\frac{2}{\pi}\left(\frac{1}{1+x^{2}}\right) .
\end{aligned}
\end{gathered}
$$

19. State Parseval's Identity theorem in Fourier Transform. [CO4 - L1-May/June 2014]
Solution:

$$
\int_{-\infty}^{\infty}|F(s)|^{2} d s=\int_{-\infty}^{\infty}|F(x)|^{2} d x
$$

20. Find the Fourier sine transform of $f(x)=1$ is $(0, l) . \quad$ [CO4 - H2]

Solution: $\quad F[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin \frac{n \pi x}{l} d x$

$$
\begin{aligned}
& =\sqrt{\frac{2}{\pi}} \int_{0}^{l} \sin \frac{n \pi x}{l} d x=\sqrt{\frac{2}{\pi}}\left[\frac{-\cos n \pi x / l}{n \pi / l}\right]_{0}^{l} \\
& =-\sqrt{\frac{2}{\pi}} \frac{l}{n \pi}[\cos n \pi-\cos 0] \\
F[f(x)]=- & \frac{l}{n \pi} \sqrt{\frac{2}{\pi}}\left[(-1)^{n}-1\right]
\end{aligned}
$$

21. Find the Fourier transform of $\boldsymbol{e}^{-\propto|x|}, \propto>0$. [CO4-H2]

Solution: $\quad F\left[e^{-\alpha|x|}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\alpha|x|} e^{i s x} d x$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\alpha|x|}(\cos s x+i \sin s x) d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\alpha|x|} \cos s x d x+0 \\
F\left[e^{-\alpha|x|}\right] & =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-\alpha x} \cos s x d x=\sqrt{\frac{2}{\pi}}\left(\frac{\alpha}{\alpha^{2}+s^{2}}\right)
\end{aligned}
$$

22. Find the Fourier cosine transform of $\boldsymbol{f}(\boldsymbol{x})=\left\{\begin{array}{c}\boldsymbol{x}, \mathbf{0}<x<1 \\ 2-\boldsymbol{x}, \quad 1<x<2 \\ 0, \quad x>2\end{array}\right.$ [CO4-H2]

Solution: $\quad F_{C}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos s x d x$

$$
\begin{aligned}
& =\sqrt{\frac{2}{\pi}}\left[\int_{0}^{1} x \cos s x d x+\int_{1}^{2}(2-x) \cos s x d x\right] \\
& =\sqrt{\frac{2}{\pi}}\left\{\left[(x) \frac{\sin s x}{s}+\frac{\cos s x}{s^{2}}\right]_{0}^{1}+\left[(2-x) \frac{\sin s x}{s}-\frac{\cos s x}{s^{2}}\right]_{1}^{2}\right\} \\
& =\sqrt{\frac{2}{\pi}}\left[\frac{[\sin s}{s}+\frac{\cos s}{s^{2}}-\frac{1}{s^{2}}-\frac{\cos 2 s}{s^{2}}-\frac{\sin s}{s}+\frac{\cos s}{s^{2}}\right] \\
& =\sqrt{\frac{2}{\pi}}\left[\frac{2 \cos s}{s^{2}}-\frac{1}{s^{2}}-\frac{\cos 2 s}{s^{2}}\right]=\sqrt{\frac{2}{\pi}}\left[\frac{2 \cos s}{s^{2}}-\frac{(1+\cos 2 s)}{s^{2}}\right] \\
F_{C}[f(x)] & =\sqrt{\frac{2}{\pi}}\left[\frac{2 \cos s}{s^{2}}-\frac{2 \cos ^{2} s}{s^{2}}\right]=\sqrt{\frac{2}{\pi}} \frac{2 \cos s(1-\cos s)}{s^{2}}
\end{aligned}
$$

23. Find the Fourier transform of $\boldsymbol{f}(\boldsymbol{x})=\left\{\begin{array}{c}\boldsymbol{e}^{\boldsymbol{i} \boldsymbol{K x} \boldsymbol{x}}, \boldsymbol{a}<x<b \\ 0, \boldsymbol{x}<a, x>b\end{array}\right.$
[CO4-H2]
Solution: $\quad F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{i K x} e^{i s x} d x=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{i(K+s) x} d x \\
& =\frac{1}{\sqrt{2 \pi}}\left[\frac{e^{i(K+s) x}}{i(K+s)}\right]_{a}^{b} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{i(K+s)}\left[e^{i(K+s) b}-e^{i(K+s) a}\right]
\end{aligned}
$$

24. State the Fourier transform of the derivatives of a function.
[CO4 - L1-May/June 2016]

Solution:

$$
F\left[x^{n} f(x)\right]=(-1)^{n} \frac{d^{n}}{d s^{n}}(s)
$$

PART B

1. Show that $e^{-\frac{x^{2}}{2}}$ is self - reciprocal under Fourier cosine transform. [CO4 - H2 - May/June 2016]

Soln:

$$
\begin{aligned}
& \text { We know that } \mathrm{F}_{\mathrm{C}}[f(\mathrm{x})]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos \mathrm{s} x \mathrm{~d} x \\
& \mathrm{~F}_{\mathrm{C}}\left[e^{-x^{2} / 2}\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-x^{2} / 2} \cos \mathrm{~s} x \mathrm{~d} x \\
& =\sqrt{\frac{2}{\pi}} \cdot \frac{1}{2} \int_{-\infty}^{\infty} \boldsymbol{e}^{-x^{2} / 2} \cos \mathrm{~s} x \mathrm{~d} x \\
& =\frac{1}{2} \sqrt{\frac{2}{\pi}} R . P \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{\text {isx }} d x \\
& =\frac{1}{\sqrt{2 \pi}} \text { R.P } \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{\text {isx }} d x \\
& =\frac{1}{\sqrt{2 \pi}} \text { R.P } \int_{-\infty}^{\infty} e^{-\frac{-x^{2}}{2}+i s x} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} \text { R.P } \int_{-\infty}^{\infty} e^{-\frac{-1}{2}\left(x^{2}-2 i s x\right)} \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi}} \text { R.P } \int_{-\infty}^{\infty} e^{-\frac{-1}{2}\left(x^{2}-2 i s x+(i s)^{2}-(i s)^{2}\right)} \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi}} \text { R.P } \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-i s)^{2}} e^{-s^{2} / 2} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} \text { R.P } \int_{-\infty}^{\infty} e^{-\left[\frac{x-i s}{\sqrt{2}}\right]^{2}} e^{-s^{2} / 2} \mathrm{~d} x \\
& \text { Put } \mathrm{y}=\frac{x-i s}{\sqrt{2}} \left\lvert\, \begin{array}{lllllll}
x & \rightarrow & -\infty & \Rightarrow & y & \rightarrow & -\infty \\
x & \rightarrow & \infty & \Rightarrow & y & \rightarrow & \infty
\end{array}\right. \\
& d y=\frac{d x}{\sqrt{2}} \\
& \therefore \mathrm{~F}_{\mathrm{C}}\left[e^{-x^{2 / 2}}\right]=\frac{1}{\sqrt{2 \pi}} \text { R.P } \int_{-\infty}^{\infty} e^{-y^{2}} e^{-s^{2 / 2}} \sqrt{2} \mathrm{dy} \\
& =\frac{1}{\sqrt{\pi}} e^{-s^{2 / 2}} \text { R.P } \int_{-\infty}^{\infty} e^{-y^{2}} \mathrm{dy} \\
& =\frac{1}{\sqrt{\pi}} e^{-s^{2 / 2}} \sqrt{\pi} \quad\left[\because \int_{-\infty}^{\infty} e^{-y^{2}} \mathrm{dy}=\sqrt{\pi}\right] \\
& \therefore \mathrm{F}_{\mathrm{C}}\left[e^{-x^{2 / 2}}\right] \quad=\mathrm{e}^{-\mathrm{s}^{2} / 2}
\end{aligned}
$$

Hence $f(\mathrm{x})=\mathrm{e}^{-\mathrm{s}^{2} / 2}$ is self reciprocal with respect to Fourier cosine transform.

2. Find the Fourier sine transform of [CO4-H2-Apr/May 2011]

$$
f(\mathrm{x})=\left\{\begin{array}{cl}
x, & 0<x 1 \\
2-x, & 1<x 2 \\
0, & x>2 .
\end{array}\right.
$$

Solution:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{S}}[f(x)] & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin \mathrm{s} x \mathrm{~d} x \\
& =\sqrt{\frac{2}{\pi}}\left[\int_{0}^{1} x \sin \mathrm{~s} x \mathrm{~d} x+\int_{1}^{2}(2-x) \sin \mathrm{s} x \mathrm{~d} x\right] \\
& =\sqrt{\frac{2}{\pi}}\left\{\left[x\left(\frac{-\cos s x}{s}\right)-(1)\left(\frac{-\sin s x}{s^{2}}\right)\right]_{0}^{1}+\left[(2-\mathrm{x})\left(\frac{-\cos s x}{s}\right)-(-1)\left(\frac{-\sin s x}{s^{2}}\right)\right]_{1}^{2}\right\} \\
& =\sqrt{\frac{2}{\pi}}\left\{\left[\frac{-\cos s}{s}+\frac{\sin s}{s^{2}}\right]+\left[\frac{-\sin 2 s}{s^{2}}+\frac{\cos s}{s}+\frac{\sin s}{s^{2}}\right]\right\} \\
& =\sqrt{\frac{2}{\pi}}\left[\frac{2 \sin s-\sin 2 s}{s^{2}}\right]
\end{aligned}
$$

3.Using Parseval's identity calculate
[CO4 - L3]

$$
\begin{array}{lll}
\text { i) } \int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}} \text { if } \mathbf{a}>0 & \text { ii) } \int_{0}^{\infty} \frac{x^{2}}{\left(a^{2}+x^{2}\right)^{2}} d x
\end{array}
$$

Solution:

$$
\begin{align*}
& f(\boldsymbol{x})=\mathrm{e}^{-\mathrm{ax}}, \\
& \mathrm{~F}_{\mathrm{S}}[f(\boldsymbol{x})]=\sqrt{\frac{2}{\pi}}\left(\frac{s}{s^{2}+a^{2}}\right)=\mathrm{F}_{\mathrm{S}}(\mathrm{~s}) \tag{1}\\
& \mathrm{F}_{\mathrm{C}}[f(\boldsymbol{x})]=\sqrt{\frac{2}{\pi}}\left(\frac{a}{s^{2}+a^{2}}\right)=\mathrm{F}_{\mathrm{C}}(\mathrm{~s}) \tag{2}
\end{align*}
$$

(i) Parseval's identity for Fourier sine transform is

$$
\begin{aligned}
& \text { Here } \begin{aligned}
\int_{0}^{\infty}|f(x)|^{2} \mathrm{dx} & =\int_{0}^{\infty}\left|F_{s}(s)\right|^{2} \mathrm{ds} \\
f(x) & =\mathrm{e}^{-\mathrm{ax}} \\
\int_{0}^{\infty}\left|e^{-a x}\right|^{2} \mathrm{dx} & =\int_{0}^{\infty}\left[\sqrt{\frac{2}{\pi}} \frac{a}{s^{2}+a^{2}}\right]^{2} \mathrm{ds} \\
\int_{0}^{\infty} e^{-2 a x} \mathrm{dx} & =\frac{2}{\pi} \int_{0}^{\infty} \frac{s^{2}}{\left(s^{2}+a^{2}\right)^{2}} \mathrm{ds} \\
\int_{0}^{\infty} \frac{s^{2}}{\left(s^{2}+a^{2}\right)^{2}} \mathrm{ds} & =\frac{\pi}{2} \int_{0}^{\infty} e^{-2 a x} \mathrm{dx} \\
& =\frac{\pi}{2}\left[\frac{e^{-2 a x}}{-2 a}\right]_{0}^{\infty}=\frac{\pi}{2}\left[0+\frac{1}{2 a}\right]=\frac{\pi}{4 a} \\
\int_{0}^{\infty} \frac{s^{2}}{\left(s^{2}+a^{2}\right)^{2}} \mathrm{ds} & =\frac{\pi}{4 a} \\
\int_{0}^{\infty} \frac{x^{2}}{\left(s^{2}+a^{2}\right)^{2}} \mathrm{~d} x & =\frac{\pi}{4 a}
\end{aligned}
\end{aligned}
$$

ii) Using Parsevals identity for Fourier cosine transform.

$$
\begin{aligned}
& \int_{0}^{\infty}|f(x)|^{2} \mathrm{~d} x=\int_{0}^{\infty}\left|F_{s}(s)\right|^{2} \mathrm{ds} \\
& \int_{0}^{\infty}\left|e^{-a x}\right|^{2} \mathrm{~d} x=\int_{0}^{\infty}\left\{\sqrt{\frac{2}{\pi}} \frac{a}{s^{2}+a^{2}}\right\}^{2} \mathrm{ds} \\
& \frac{2}{\pi} \int_{0}^{\infty} \frac{a^{2}}{\left(s^{2}+a^{2}\right)^{2}} \mathrm{ds}=\int_{0}^{\infty}\left(e^{-a x}\right)^{2} \mathrm{~d} x=\int_{0}^{\infty} e^{-2 a x} \mathrm{~d} x \\
& =\left[\frac{e^{-2 a x}}{-2 a}\right]_{0}^{\infty}=\frac{1}{2 a} \\
& \quad \int_{0}^{\infty} \frac{a^{2}}{\left(s^{2}+a^{2}\right)^{2}} \mathrm{ds}=\frac{\pi}{4 a} \\
& \int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}} \mathrm{ds}=\frac{\pi}{4 a^{3}}
\end{aligned}
$$

4. Find Fourier transform of $e^{-a|x|}$ and hence deduce that

i) $\int_{0}^{\infty} \frac{\cos x t}{a^{2}+t^{2}} d t=\frac{\pi}{2 a} e^{-a|x|}$
ii) $\mathrm{F}\left[x e^{-a|x|}\right]=(i) \sqrt{\frac{2}{\pi}} \frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$

Solution:

Fourier transform of $f(\boldsymbol{x})$ is given by

$$
\begin{align*}
& \begin{aligned}
& \mathrm{F}[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) . \mathrm{e}^{\mathrm{isx}} \mathrm{~d} x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a|x|} \mathrm{e}^{\mathrm{isx}} \mathrm{dx} \\
&=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a|x|} \cos \mathrm{sx} \mathrm{dx}=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-a x} \cos \mathrm{sx} \mathrm{dx} \\
& \mathrm{~F}\left[e^{-a|x|}\right]=\sqrt{\frac{2}{\pi}}\left(\frac{a}{s^{2}+a^{2}}\right)
\end{aligned} \quad \ldots \mathrm{A}
\end{align*}
$$

Using inversion formula,

$$
\begin{aligned}
& f(\mathrm{x})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \sqrt{\frac{2}{\pi}} \cdot\left(\frac{a}{s^{2}+a^{2}}\right) \mathrm{e}^{\mathrm{isx}} \mathrm{~d} s \\
&=\frac{a}{\pi} \int_{-\infty}^{\infty}\left(\frac{\cos s x-i \sin s x}{s^{2}+a^{2}}\right) \mathrm{ds} \\
&=\frac{a}{\pi} \int_{-\infty}^{\infty}\left(\frac{\cos s x}{s^{2}+a^{2}}\right) \mathrm{ds} \\
&=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos s x}{s^{2}+a^{2}} \mathrm{ds} \\
& \therefore \int_{-\infty}^{\infty} \frac{\cos s x}{s^{2}+a^{2}} \mathrm{ds}=\frac{\pi}{2 a} f(\mathrm{x})=\frac{\pi}{2 a} \cdot e^{-a|x|} \\
& \int_{-\infty}^{\infty} \frac{\cos t x}{t^{2}+a^{2}} \mathrm{dt}=\frac{\pi}{2 a} e^{-a|x|}
\end{aligned}
$$

ii) $\mathrm{F}\left[x e^{-a|x|}\right]=(-i) \sqrt{\frac{2}{\pi}} \frac{d}{d s}\left(\frac{a}{s^{2}+a^{2}}\right)$

$$
\begin{aligned}
& =(-i) \sqrt{\frac{2}{\pi}}\left[\frac{0-2 a s}{\left(s^{2}+a^{2}\right)^{2}}\right] \\
& \mathrm{F}\left[x e^{-a|x|}\right]=i \sqrt{\frac{2}{\pi}} \frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}
\end{aligned}
$$

5. Evaluate $\int_{0}^{\infty} \frac{d x}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)\left(\mathrm{x}^{2}+\mathrm{b}^{2}\right)}$ using Fourier transform . [CO4-H2-Nov/Dec-2014]

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{ax}}, \mathrm{~g}(\mathrm{x})=\mathrm{e}^{-\mathrm{bx}} \\
\mathrm{~F}_{\mathrm{c}}[\mathrm{f}(\mathrm{x})]=\sqrt{\frac{2}{\pi}}\left(\frac{\mathrm{a}}{\mathrm{~s}^{2}+\mathrm{a}^{2}}\right), \mathrm{F}_{\mathrm{c}}[\mathrm{~g}(\mathrm{x})]=\sqrt{\frac{2}{\pi}}\left(\frac{\mathrm{~b}}{\mathrm{~s}^{2}+\mathrm{b}^{2}}\right)
\end{gathered}
$$

Using properly,

$$
\begin{gathered}
\int_{0}^{\infty} F_{c}[f(x)] F_{c}[g(x)] d s=\int_{0}^{\infty} f(x) g(x) d x \\
\int_{0}^{\infty} \sqrt{\frac{2}{\pi}}\left(\frac{a}{s^{2}+a^{2}}\right) \sqrt{\frac{2}{\pi}\left(\frac{b}{s^{2}+b^{2}}\right) d s=\int_{0}^{\infty} e^{-a x} e^{-b x} d x} \\
\frac{2 a b}{\pi} \int_{0}^{\infty} \frac{d s}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}=\int_{0}^{\infty} e^{-(a+b) x} \\
=\left[\frac{e^{-(a+b) x}}{-(a+b)}\right]_{0}^{\infty} \\
=\frac{1}{(a+b)}\left[e^{-\infty}-e^{0}\right] \\
=\frac{-1}{a+b}\left[e^{-\infty}-1\right]=\frac{1}{a+b} \\
\Rightarrow \frac{2 a b}{\pi} \int_{0}^{\infty} \frac{d s}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}=\frac{1}{a+b} \Rightarrow \int_{0}^{\infty} \frac{d s}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}=\frac{\pi}{2 a b(a+b)}
\end{gathered}
$$

Put $\mathrm{s}=\mathrm{x}$

$$
\therefore \int_{0}^{\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)\left(\mathrm{x}^{2}+\mathrm{b}^{2}\right)}=\frac{\pi}{2 \mathrm{ab}(\mathrm{a}+\mathrm{b})}
$$

6. show that $\mathrm{e}^{-\mathrm{x}^{2} / 2}$ is a self reciprocal under Fourier Transform. [CO4-H2-Nov/Dec 2016]

$$
\begin{aligned}
& F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2} / 2} \mathrm{e}^{\mathrm{isx}} \mathrm{e}^{\mathrm{s}^{2} / 2} \mathrm{e}^{-\mathrm{s}^{2} / 2 \mathrm{dx}} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2} / 2+\mathrm{isx}+\mathrm{s}^{2} / 2} \mathrm{e}^{-\mathrm{s}^{2} / 2 \mathrm{dx}} \\
& F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(x-i s)^{2} / 2} e^{-s^{2} / 2} d x \\
& \text { Put } u=\frac{x-\text { is }}{\sqrt{2}} \text { when } \begin{array}{c}
\mathrm{x}=-\infty, \mathrm{u}=-\infty \\
\mathrm{x}=\infty, \mathrm{u}=\infty
\end{array} \text {; } \\
& d u=\frac{d x}{\sqrt{2}} \\
& F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-u^{2}} e^{-s^{2} / 2 \sqrt{2} d u} \\
& =\mathrm{e}^{-\mathrm{s}^{2} / 2} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{u}^{2}} \mathrm{du} \\
& =\mathrm{e}^{-\mathrm{s}^{2} / 2} \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{u}^{2}} d u \\
& =\mathrm{e}^{-\mathrm{s}^{2} / 2} \frac{2}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2}=\mathrm{e}^{-\mathrm{s}^{2} / 2} \\
& {\left[\because \int_{0}^{\infty} \mathrm{e}^{-\mathrm{u}^{2}} \mathrm{du}=\frac{\sqrt{\pi}}{2}\right]} \\
& \therefore \mathrm{F}[\mathrm{f}(\mathrm{x})]=\mathrm{e}^{-\mathrm{s}^{2} / 2}
\end{aligned}
$$

Hence proved.
7. State \& prove convolution theorem.

If $\mathrm{F}(\mathrm{s}) \& G(s)$ are the FT of $\mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ respectively, then the FT of the convolution of $f(x) \& g(x)$ is the product of their FT.
ie, $F[(f * g)(x)]=F(s) \cdot G(s)$
proof:

$$
\begin{gathered}
F[(f * g)(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(f * g)(x) e^{i s x} d x \\
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) g(x-t)\right] d t e^{i s x} d x \\
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t)\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(x-t) e^{i s x} d x\right] d t \\
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t)\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(x-t) e^{i s x} e^{i s t} e^{-i s t} d x\right] d t \\
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t)\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(x-t) e^{i s(x-t)} d(x-t)\right] e^{i s t} d t \\
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i s t} d t \cdot G(s) \\
F[(f * g)(x)]=F(s) \cdot G(s)
\end{gathered}
$$

Hence Proved.
8. Find FST of $\frac{e^{-a x}}{x}$
[CO4-H2]

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{s}}[\mathrm{f}(\mathrm{x})]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \mathrm{f}(\mathrm{x}) \sin \mathrm{sx} \mathrm{dx} \\
& \mathrm{~F}(\mathrm{~s})=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\mathrm{e}^{-\mathrm{ax}}}{\mathrm{x}} \sin \mathrm{sx} \mathrm{dx}
\end{aligned}
$$

Diff. w, r, to 's' on both sides,

$$
\begin{gathered}
\begin{aligned}
& \frac{d}{d s} F(s)=\frac{d}{d s}\left[\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{e^{-a x}}{x} \sin s x d x\right] \\
&= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\partial}{\partial s}\left(\frac{e^{-a x}}{x} \sin s x d x\right) \\
&=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{e^{-a x}}{x} \cos s x d x \\
& \frac{d}{d s} F(s)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \cos s x d x \\
& \frac{d}{d s} F(s)=\sqrt{\frac{2}{\pi}}\left[\frac{a}{s^{2}+a^{2}}\right]
\end{aligned}
\end{gathered}
$$

Taking integration on both sides w, r, to 's'

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~s})=\sqrt{\frac{2}{\pi}} \int \frac{\mathrm{a}}{\mathrm{~s}^{2}+\mathrm{a}^{2}} \mathrm{ds} \\
& {\left[\because \int \frac{\mathrm{dx}}{\mathrm{x}^{2}+\mathrm{a}^{2}}=\frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)\right.} \\
& \mathrm{F}[\mathrm{f}(\mathrm{x})]=\sqrt{\frac{2}{\pi} \mathrm{a} \frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{s}{\mathrm{a}}\right)} \\
& \quad=\sqrt{\frac{2}{\pi}} \tan ^{-1}\left(\frac{\mathrm{~s}}{\mathrm{a}}\right)
\end{aligned} \mathrm{F}_{\mathrm{F}[\mathrm{f}(\mathrm{x})]=\sqrt{\frac{2}{\pi}} \tan ^{-1}\left(\frac{\mathrm{~s}}{\mathrm{a}}\right)} .
$$

9. Find FST of e^{-x} hence deduce that $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi}{2} e^{-m} \quad$ [CO4 - H2]

$$
\begin{gathered}
\mathrm{F}_{\mathrm{s}}[\mathrm{f}(\mathrm{x})]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \mathrm{f}(\mathrm{x}) \sin \mathrm{sx} \mathrm{dx} \quad \because \mathrm{~F}_{\mathrm{s}}\left[\mathrm{e}^{-\mathrm{ax}}\right]=\frac{\mathrm{s}}{\mathrm{~s}^{2}+\mathrm{a}^{2 S}} \text { Here } \mathrm{a}=1 \\
\mathrm{~F}_{\mathrm{s}}[\mathrm{f}(\mathrm{x})]=\sqrt{\frac{2}{\pi}}\left[\frac{\mathrm{~s}}{\mathrm{~s}^{2}+1}\right] \\
{\left[\because \mathrm{F}_{\mathrm{s}}[\mathrm{f}(\mathrm{x})]=\mathrm{F}_{\mathrm{s}}\left[\mathrm{e}^{-\mathrm{ax}}\right]=\frac{\mathrm{s}}{\mathrm{~s}^{2}+\mathrm{a}^{2}}\right]}
\end{gathered}
$$

IFST

$$
\mathrm{f}(\mathrm{x})=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \mathrm{F}_{\mathrm{s}}[\mathrm{f}(\mathrm{x})] \sin \mathrm{sx} \mathrm{ds}
$$

$$
\mathrm{e}^{-\mathrm{x}}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sqrt{\frac{2}{\pi}}\left(\frac{\mathrm{~s}}{\mathrm{~s}^{2}+1}\right) \sin \mathrm{sx} \mathrm{ds}
$$

$$
\mathrm{e}^{-\mathrm{x}}=\frac{2}{\pi} \int_{0}^{\infty} \frac{\mathrm{s} \sin \mathrm{sx}}{1+\mathrm{S}^{2}} \mathrm{ds}
$$

$$
\frac{2}{\pi} \mathrm{e}^{-\mathrm{x}}=\int_{0}^{\infty} \frac{\mathrm{s} \sin \mathrm{sx}}{\mathrm{~s}^{2}+1} \mathrm{ds}
$$

Put $x=m$

$$
\int_{0}^{\infty} \frac{\sin \mathrm{ms}}{\mathrm{~s}^{2}+1} \mathrm{ds}=\frac{2}{\pi} \mathrm{e}^{-\mathrm{m}}
$$

Put $\mathrm{s}=\mathrm{x}$

$$
\int_{0}^{\infty} \frac{x \sin m x}{x^{2}+1} d x=\frac{2}{\pi} e^{-m}
$$

10. Find FCT of $e^{-x^{2}}$
[CO4 - H2-Apr/May - 2014]

$$
\mathrm{F}_{\mathrm{c}}[\mathrm{f}(\mathrm{x})]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \mathrm{f}(\mathrm{x}) \cos \mathrm{sx} \mathrm{dx}
$$

$$
\begin{aligned}
& \therefore \mathrm{F}_{\mathrm{c}}\left[\mathrm{e}^{-\mathrm{x}^{2}}\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \cos \mathrm{sx} \mathrm{dx} \\
& =\sqrt{\frac{2}{\pi}} \frac{1}{2} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \cos \mathrm{x} \mathrm{dx} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \cos s \mathrm{xdx} \\
& =\text { R. P of } \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{e}^{\mathrm{isx}} \mathrm{dx} \\
& =\text { R. P of } \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}+\mathrm{isx}} \mathrm{dx} \\
& =\text { R. P of } \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{x}^{2+i s x}} \mathrm{e}^{\mathrm{s}^{2} / 4} \mathrm{e}^{-\mathrm{s}^{2} / 4 \mathrm{dx}} \\
& =\text { R. P of } \frac{\mathrm{e}^{-\mathrm{s}^{2} / 4}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\left(-\mathrm{x}^{2}+\mathrm{isx}+\mathrm{s}^{2} / 4\right)} \mathrm{dx} \\
& =\text { R. P of } \frac{\mathrm{e}^{-\mathrm{s}^{2} / 4}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\mathrm{x}-\frac{\mathrm{is}}{2}\right)^{2}} \mathrm{dx}
\end{aligned}
$$

Put $x-\frac{\text { is }}{2}=y, d y=d x$

$$
\begin{gathered}
\mathrm{F}_{\mathrm{c}}\left[\mathrm{e}^{-\mathrm{x}^{2}}\right]=\text { R.P of } \frac{\mathrm{e}^{-\mathrm{s}^{2} / 4}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{y}^{2}} d y \\
\mathrm{~F}_{\mathrm{c}}\left[\mathrm{e}^{-\mathrm{x}^{2}}\right]=\text { R.P of } \frac{\mathrm{e}^{-s^{2} / 4}}{\sqrt{2 \pi}} \sqrt{\pi} \\
{\left[\because \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{y}^{2}} \mathrm{dy}=\sqrt{\pi}\right]} \\
\mathrm{F}_{\mathrm{c}}\left[\mathrm{e}^{-\mathrm{x}^{2}}\right]=\frac{\mathrm{e}^{-\mathrm{s}^{2} / 4}}{\sqrt{2}}
\end{gathered}
$$

$\underline{\text { UNIT - V }} \underline{Z}$ - TRANSFORMS AND DIFFERENCE EQUATIONS

PART - A

Problem 1 What is the Z- transform of discrete unit step function?
Solution: Discrete Unit step function is
[CO 5-H2-May/Jun 2014]

$$
\begin{aligned}
& \begin{array}{l}
u(n)=1, n \geq 0 \\
\quad=0, n<0
\end{array} \\
& Z[u(n)]=\sum_{n=0}^{\infty} 1 \cdot z^{-n}=1+z^{-1}+z^{-2}+. .=\frac{1}{1-z^{-1}} \text { if }\left|z^{-1}\right|<1 \\
& \frac{z}{z-1} \text { if }|z|>1
\end{aligned}
$$

Problem 2 Find $Z\left(\frac{1}{2^{n}}\right)$. [CO 5-H2]
Solution: $Z\left(\frac{1}{2^{n}}\right)=\sum_{0}^{\infty} \frac{1}{2^{n}} z^{-n}=1+\frac{1}{2} z^{-1}+\frac{1}{2^{2}} z^{-2}+\frac{1}{2^{3}} z^{-3}+\ldots$

$$
=1+\frac{1}{2 z}+\frac{1}{4 z^{2}}+\frac{1}{8 z^{3}}+\ldots
$$

Problem 3 Find $Z[u(n-1)]$. [CO 5-H2]
Solution:

$$
\begin{aligned}
& Z[u(n-1)]=\sum_{n=0}^{\infty} u(n-1) z^{-n}=\sum_{n=1}^{\infty} u(n-1) z^{-n} \\
& =\sum_{n=1}^{\infty} z^{-n}=\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\ldots . \\
& \quad=\frac{1}{z}\left[1+\frac{1}{z}+\frac{1}{z^{2}}+\ldots .\right] \\
& \quad=\frac{1}{z}\left(1-\frac{1}{z}\right)=\frac{1}{z-1} \text { if }|z|>1
\end{aligned}
$$

Problem 4 Find the Z- transform of unit impulse function? [CO 5-H2-Nov/Dec 2014] Solution: Unit impulse function is

$$
\begin{aligned}
& \delta(n)=1, \quad n=0 \\
& \quad=0, \quad n \neq 0 \\
& Z[\delta(n)]=\sum_{n=0}^{\infty} \delta(n) z^{-n}=z^{-0}=1 .
\end{aligned}
$$

Problem 5 Find $Z[\delta(n-k)]$. [CO 5-H2]
Solution: $Z[\delta(n-k)]=\sum_{n=0}^{\infty} \delta(n-k) z^{-n}=z^{-k}=\frac{1}{z^{k}}$.

Problem 6 If $Z[f(n)]=U(z)$ then $Z\left[a^{n} f(n)\right]=$ \qquad [CO 5-H2-May/Jun 2015]

Solution: $Z\left[a^{n} f(n)\right]=\sum a^{n} f(n) z^{-n}=\sum f(n)(a / z)^{n}=U(z / a)$.

Problem 7 If $Z[f(n)]=U(z)$, then show that $Z[f(n+k)]=z^{ \pm k} U(z)$. [CO 5-H2]
Solution:

$$
\begin{aligned}
Z[f(n \pm k)] & =\sum_{0}^{\infty} f(n \pm k) z^{-n}=z^{ \pm k} \sum_{0}^{\infty} f(n \pm k) z^{-(n \pm k)} \\
& =z^{ \pm k} \sum_{0}^{\infty} f(r) z^{-r}=z^{ \pm k} U(z)
\end{aligned}
$$

Problem 8 IF $z[f(n)]=U(z)$, then $Z\left(\frac{f(n)}{n}\right)=-\int z^{-1} U(z) d z$. [CO 5-H2]
Solution:

$$
\begin{aligned}
& Z\left[\frac{f(n)}{n}\right]=\sum_{0}^{\infty} \frac{f(n)}{n} z^{-n}=-\sum_{0}^{\infty} f(n) \int z^{-n-1} d z, \quad \text { since } \frac{z^{-n}}{n}=-\int z^{-n-1} d z \\
& =-\sum_{0}^{\infty} f(n) \int z^{-n-1} d z=-\int\left(z^{-1} \sum f(n) z^{-n}\right) d z \\
& =-\int z^{-1} U(z) d z .
\end{aligned}
$$

Problem 9 If $Z[f(n)]=U(z)$, then $Z[n f(n)]=$ \qquad . [CO 5-H2-May/Jun 2013]
Solution:

$$
\begin{aligned}
& Z[n f(n)]=\sum n f(n) z^{-n}=-z \sum-n f(n) z^{-n-1} \\
& =--z \sum f(n) \frac{d}{d z}\left(z^{-n}\right)=-z \frac{d}{d z} \sum f(n) z^{-n}=-z \frac{d}{d z} U(z) .
\end{aligned}
$$

Problem 10 State initial and final value theorem of Z-transform.[CO 5-H2-Nov/Dec 2015] Solution: Initial value Theorem

If $Z[f(n)]=U(z), n \geq 0$ then $\underset{\mathrm{n} \rightarrow 0}{\text { Limit }} f(n)=f(0)={ }_{z \rightarrow \infty}^{\text {Limit }} U(z)$
Final value Theorem

$$
\text { If } Z[f(n)]=U(z), n \geq 0 \underset{n \rightarrow \infty}{\text { Limit }} f(n)={\underset{z \rightarrow 1}{\text { Limit }}(z-1) U(z), ~(z)}_{z \rightarrow 1}
$$

Problem 11 Define convolution of two sequences $\{f(n)\}$ and $\{g(n)\}$
Solution: $f(n)^{*} g(n)=\sum_{m=0}^{n} f(m) g(n-m)$
[CO 5-H2-May/Jun 2015]

Problem 12 Find $Z\left[a^{n+3}\right]$. [CO 5-H2]
Solution: $Z\left[a^{n+3}\right]=\sum a^{n+3} z^{-n}=a^{3} Z\left(a^{n}\right)=a^{3} Z\left[a^{n} .1\right]=a^{3} \frac{z / a}{z / a^{-1}}=a^{3} \frac{z}{z-a}$
Problem $13 \quad Z\left[y_{n+2}\right]=$ \qquad - [CO 5-H2]

Solution: $Z\left[y_{n+2}\right]=z^{2}\left[y(z)-y_{0}-y_{1} z^{-1}\right]$
Problem 14 Find $Z^{-1}\left[\frac{z}{(z-1)(z-2)}\right]$. [CO 5-H2-May/Jun 2013]
Solution: Let $\left[\frac{z}{(z-1)(z-2)}\right]=U(z)$

$$
\text { Then } \begin{aligned}
& \frac{U(z)}{z}=\frac{1}{(z-1)(z-2)}=\frac{A}{z-1}+\frac{B}{z-2} \\
& z=2, \quad 1=B \\
& z=1, \quad 1=-A \\
& \therefore \frac{U(z)}{z}=\frac{-1}{(z-1)}+\frac{1}{z-2} \\
& \therefore U(z)=\frac{-z}{z-1}+\frac{z}{z-2} \\
& \therefore u(n)=-1+2^{n}=2^{n}-1
\end{aligned}
$$

Problem 15 Write the formula to find the inverse Z- Transform using residue method.
Solution: The inverse Z-Transform of $U(z)$ is given by the formula [CO 5-H2]

$$
u_{n}=\frac{1}{2 \pi i} \quad \int_{C} U(z) z^{n-1} d z
$$

$=$ Sum of residues of $U(z) z^{n-1}$ at the poles of $U(z)$ which are inside the contour C drawn according to the region of convergence given.

PART - B

1. Using Z-Transforms, solve $y_{n+2}+4 y_{n+1}-5 y_{n}=24 n-8$ given that $y_{0}=3$ and $y_{1}=-5$ [CO 5-H2-Nov/Dec 2014]

$$
\begin{aligned}
& \text { sol: Given } \\
& y_{n+2}+4 y_{n+1}-5 y_{n}=24 n-8 \\
& Z\left[y_{n+2}\right]+4 Z\left[y_{n+1}\right]-5 Z\left[y_{n}\right]=24 Z[n]-8 Z[1] \\
& {\left[z^{2} Y(z)-z^{2} y(0)-z y(1)\right]+4[z Y(z)-z y(0)]-5 Y(z)=\frac{24 z}{(z-1)^{2}}-\frac{8 z}{z-1}} \\
& \text { put } \quad y_{0}=3, y_{1}=-5 \\
& \therefore\left[z^{2}+4 z-5\right] Y(z)-3 z^{2}+5 z-12 z=\frac{24 z-8 z(z-1)}{(z-1)^{2}} \\
& (z+5)(z-1) Y(z)=\frac{24 z-8 z^{2}+8 z}{(z-1)^{2}}+3 z^{2}+7 z \\
& (z+5)(z-1) Y(z)=\frac{3 z^{4}+z^{3}-19 z^{2}+39 z}{(z-1)^{2}} \\
& Y(z) \quad=\frac{z\left[3 z^{3}+z^{2}-19 z^{1}+39\right]}{(z+5)(z-1)^{3}} \\
& \frac{Y(z)}{z}=\frac{\left[3 z^{3}+z^{2}-19 z^{1}+39\right]}{(z+5)(z-1)^{3}} \\
& \text { let } \frac{\left[3 z^{3}+z^{2}-19 z^{1}+39\right]}{(z+5)(z-1)^{3}}=\frac{A}{z+5}+\frac{B}{z-1}+\frac{C}{(z-1)^{2}}+\frac{D}{(z-1)^{3}} \\
& 3 z^{3}+z^{2}-19 z^{1}+39=A(z-1)^{3}+B(z+5)(z-1)^{2}+C(z+5)(z-1)+D(z+5)
\end{aligned}
$$

solving this eqn, we get $A=1, B=2, C=-2, D=4$

$$
\begin{aligned}
\frac{Y(z)}{z} & =\frac{1}{z+5}+\frac{2}{z-1}+\frac{-2}{(z-1)^{2}}+\frac{4}{(z-1)^{3}} \\
Y(z) & =\frac{z}{z+5}+\frac{2 z}{z-1}-\frac{2 z}{(z-1)^{2}}+\frac{4 z}{(z-1)^{3}} \\
y(n) & =Z^{-1}\left[\frac{z}{z+5}\right]+2 Z^{-1}\left[\frac{z}{z-1}\right]-2 Z^{-1}\left[\frac{z}{(z-1)^{2}}\right]+2 Z^{-1}\left[\frac{2 z}{(z-1)^{3}}\right] \\
y(n) & =(-5)^{n}+2(1)^{n}-2 n+2 n(n-1)
\end{aligned}
$$

2. Using Z-Transforms, solve $y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}$ given that $y_{0}=0$ and $y_{1}=0$
[CO 5-H2-Nov/Dec 2012]
sol: Given

$$
y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}
$$

$$
Z\left[y_{n+2}\right]+6 Z\left[y_{n+1}\right]+9 Z\left[y_{n}\right]=Z\left[2^{n}\right]
$$

$\left[z^{2} Y(z)-z^{2} y(0)-z y(1)\right]+6[z Y(z)-z y(0)]+9 Y(z)=\frac{z}{z-2}$

$$
\text { put } \quad y_{0}=0, y_{1}=0
$$

$$
\begin{align*}
\therefore\left[z^{2}+6 z+9\right] Y(z) & =\frac{z}{z-2} \\
(z+3)^{2} Y(z) & =\frac{z}{z-2} \\
Y(z) & =\frac{z}{(z-2)(z+3)^{2}} \\
\frac{Y(z)}{z} & =\frac{1}{(z-2)(z+3)^{2}} \tag{1}
\end{align*}
$$

$$
\text { let } \frac{1}{(z-2)(z+3)^{2}}=\frac{A}{z-2}+\frac{B}{z+3}+\frac{C}{(z+3)^{2}}
$$

$$
1=A(z+3)^{2}+B(z+3)(z-2)+C(z-2)
$$

solving this eqn, we get $A=\frac{1}{25}, B=\frac{-1}{25}, C=\frac{-1}{5}$
\therefore Eqn (1) becomes $\quad \frac{Y(z)}{z}=\left[\frac{1}{25}\right] \frac{1}{z-2}-\left[\frac{1}{25}\right] \frac{1}{z+3}-\left[\frac{1}{5}\right] \frac{1}{(z-3)^{2}}$

$$
\begin{aligned}
& Y(z)=\frac{1}{25}\left[\frac{z}{z-2}\right]-\frac{1}{25}\left[\frac{z}{z+3}\right]-\frac{1}{5}\left[\frac{z}{(z+3)^{2}}\right] \\
& y(n)=\frac{1}{25} Z^{-1}\left[\frac{z}{z-2}\right]-\frac{1}{25} Z^{-1}\left[\frac{z}{z+3}\right]-\frac{1}{5} Z^{-1}\left[\frac{z}{(z+3)^{2}}\right] \\
& y(n)=\frac{1}{25}(2)^{n}-\frac{1}{25}(-3)^{n}-\frac{n}{5}(-3)^{n}
\end{aligned}
$$

3. Find $\mathrm{z}\left[\frac{1}{n+1}\right]$. [CO 5-H2]

Solution:

$$
\begin{aligned}
z[f(\mathrm{n})] & =\sum_{n=0}^{\infty} f(n) \cdot z^{-n} \\
\mathrm{z}\left[\frac{1}{n+1}\right] & =\sum_{n=0}^{\infty} \frac{1}{n+1} \cdot z^{-n} \\
= & 1+\frac{1}{2} \cdot z^{-1}+\frac{1}{3} \cdot z^{-2}+\frac{1}{4} \cdot z^{-3}+\ldots \ldots . \\
& =1+\frac{1 / 2}{z}+\frac{1 / 3}{z^{2}}+\ldots \ldots . \\
& =z\left[\frac{1}{z}+\frac{(1 / z)^{2}}{2}+\frac{(1 / z)^{3}}{3}+\ldots \cdot\right] \\
& =z\left[-\log \left(1-\frac{1}{z}\right)\right] \\
& =-z \log \left(1-\frac{1}{z}\right) \\
& =-z \log \left(\frac{z-1}{z}\right) \\
& =z \log \left(\frac{z}{z-1}\right)
\end{aligned}
$$

(ii). Find $z^{-1}\left[\frac{z^{2}}{\left(z-\frac{1}{4}\right)^{2}}\right]$ using convolution theorem. [$\mathbf{C O} 5-\mathbf{H} 2$]

Solution.

$$
\begin{aligned}
Z^{-1}\left[\frac{z^{2}}{(z-a)^{2}}\right] & =Z^{-1}\left[\frac{z}{(z-a)} \cdot \frac{z}{(z-a)}\right] \\
& =Z^{-1}\left[\frac{z}{(z-a)}\right] * Z^{-1}\left[\frac{z}{(z-a)}\right] \\
& =a^{n} * a^{n} \\
& =\sum_{r=0}^{n} a^{r} a^{n-r} \\
& =a^{n} \sum_{r=0}^{n} a^{r} a^{-r} \\
& =a^{n} \sum_{r=0}^{n} 1 \\
& =a^{n}(n+1) \\
& =(n+1) a^{n}
\end{aligned}
$$

Therefore

$$
Z^{-1}\left[\frac{z^{2}}{\left(z-\frac{1}{4}\right)^{2}}\right]=(n+1)\left(\frac{1}{4}\right)^{n}
$$

4. Solve $y_{n+3}-3 y_{n+1}+2 y_{n}=0$ given that $y_{0}=4 ; y_{1}=0 ; y_{2}=8$. [CO 5-H2-Apr/May 2014]

Given that

$$
\begin{aligned}
& y_{n+3}-3 y_{n+1}+2 y_{n}=0 \\
& Z\left[y_{n+3}\right]-3 Z\left[y_{n+1}\right]+2 Z\left[y_{n}\right]=Z[0] \\
& z^{3} Z\left[y_{n}\right]-z^{3} y_{0}-z^{2} y_{1}-z y_{2} \\
& \quad-3\left\{z Z\left[y_{n}\right]-z y_{0}\right\}+2 Z\left[y_{n}\right]=0
\end{aligned}
$$

given that $y_{0}=4 ; y_{1}=0 ; y_{2}=8$

$$
\begin{aligned}
& \therefore \quad z^{3} Z\left[y_{n}\right]-z^{3}(4)-0-z(8) \\
&-3\left\{z Z\left[y_{n}\right]-z(4)\right\}+2 Z\left[y_{n}\right]=0 \\
& z^{3} Z\left[y_{n}\right]-3 z Z\left[y_{n}\right]+2 Z\left[y_{n}\right]-4 z^{3}-8 z+12 z=0
\end{aligned}
$$

$$
\begin{align*}
&\left(z^{3}-3 z+2\right) Z\left[y_{n}\right]=4 z^{3}-4 z \\
& Z\left[y_{n}\right]=\frac{4 z\left(z^{2}-1\right)}{\left(z^{3}-3 z+2\right)} \\
& Z\left[y_{n}\right]=\frac{4 z(z-1)(z+1)}{(z-1)(z+2)(z-1)} \\
& Z\left[y_{n}\right]=\frac{4 z(z+1)}{(z+2)(z-1)} \\
& \frac{Z\left[y_{n}\right]}{z}=\frac{4(z+1)}{(z+2)(z-1)} \tag{1}
\end{align*}
$$

Consider

$$
\begin{aligned}
& \frac{4(z+1)}{(z+2)(z-1)}=\frac{A}{(z+2)}+\frac{B}{(z-1)} \\
& 4(z+1)=A(z-1)+B(z+2)
\end{aligned}
$$

Put $z=-2$

$$
\begin{aligned}
4(-1) & =A(-3)+0 \\
\frac{4}{3} & =A
\end{aligned}
$$

Put $z=1$

$$
\begin{aligned}
& 4(2)=0+B(3) \\
& \frac{8}{3}=B
\end{aligned}
$$

Hence,

$$
\frac{4(z+1)}{(z+2)(z-1)}=\frac{\left(\frac{4}{3}\right)}{(z+2)}+\frac{\left(\frac{8}{3}\right)}{(z-1)}
$$

Putting in equation(1), we get

$$
\begin{aligned}
& \frac{Z\left[y_{n}\right]}{z}=\frac{\left(\frac{4}{3}\right)}{(z+2)}+\frac{\left(\frac{8}{3}\right)}{(z-1)} \\
& Z\left[y_{n}\right]=\left(\frac{4}{3}\right) \frac{z}{(z+2)}+\left(\frac{8}{3}\right) \frac{z}{(z-1)} \\
& {\left[y_{n}\right]=\left(\frac{4}{3}\right) Z^{-1}\left[\frac{z}{(z+2)}\right]+\left(\frac{8}{3}\right) Z^{-1}\left[\frac{z}{(z-1)}\right]} \\
& y_{n}=\left(\frac{4}{3}\right)(-2)^{n}+\left(\frac{8}{3}\right)
\end{aligned}
$$

5. Show that $Z[f(n+1)]=z F(z)-z f(0) \quad$ if $Z[f(n)]=F(z)$. [CO5-H2-Apr/May 2014]

We have,

$$
\begin{aligned}
Z[f(n)] & =\sum_{n=0}^{\infty} f(n) z^{-n} \\
Z[f(n+1)] & =\sum_{n=0}^{\infty} f(n+1) z^{-n}
\end{aligned}
$$

Put $n+1=m \quad \Rightarrow n=m-1$

and | n | 0 | ∞ |
| :---: | :---: | :---: |
| m | 1 | ∞ |

Therefore,

$$
\begin{aligned}
Z[f(n+1)] & =\sum_{m=1}^{\infty} f(m) z^{-n+1} \\
& =z \sum_{m=1}^{\infty} f(m) z^{-n} \\
& =z\left\{\sum_{m=0}^{\infty} f(m) z^{-n}-f(0)\right\} \\
& =z F(z)-z f(0)
\end{aligned}
$$

6. State and prove the initial value theorem. [CO 5-H2-Nov/Dec 2015] State:

$$
Z[f(t)]=F(z), \text { then } \operatorname{Lim}_{t \rightarrow 0} f(t)=\operatorname{Lim}_{z \rightarrow \infty} F(z)
$$

Proof :

$$
\begin{aligned}
F(z) & =Z[f(t)] \\
& =\sum_{n=0}^{\infty} f(n T) z^{-n} \\
& =\sum_{n=0}^{\infty} f(n T)\left(\frac{1}{z}\right)^{n} \\
& =f(0)+f(T)\left(\frac{1}{z}\right)+f(2 T)\left(\frac{1}{z}\right)^{2}+\ldots \ldots \ldots \ldots \ldots \\
\operatorname{Lim}_{z \rightarrow \infty} F(z) & =\operatorname{Lim}_{z \rightarrow \infty}\left\{f(0)+f(T)\left(\frac{1}{z}\right)+f(2 T)\left(\frac{1}{z}\right)^{2}+\ldots \ldots \ldots \ldots \ldots\right\} \\
& =f(0)+0+0+\ldots \ldots \ldots \\
& =f(0) \\
& =\operatorname{Lim}_{t \rightarrow 0} f(t)
\end{aligned}
$$

Hence the proof
7. State and prove the final value theorem [CO 5-H2-Nov/Dec 2015]

State : -

$$
\text { If } Z[f(t)]=F(z) \text {, then } \lim _{t \rightarrow \infty} f(t)=\lim _{z \rightarrow 1}(z-1) F(z)
$$

Pr rof:-
we have $Z[f(t+T)]-Z[f(t)]=\sum_{n=0}^{\infty} f(n T+T) z^{-n}-\sum_{n=0}^{\infty} f(n T) z^{-n}$

$$
\lim _{z \rightarrow 1}(z-1) F(z)=f(\infty)
$$

$$
=\lim _{t \rightarrow \infty} f(t)
$$

Hence the proof
(ii). Find $\mathrm{z}\left[\left|z^{2}\right|\right]$. [CO 5-H2]

Solution:

$$
\begin{aligned}
& \mathrm{z}[f(\mathrm{n})]=\sum_{n=-\infty}^{\infty} f(n) \cdot z^{-n} \\
& \begin{aligned}
& \therefore \mathrm{z}\left[a^{|n|}\right]=\sum_{n=-\infty}^{\infty} a^{|n|} \cdot z^{-n} \\
& \quad= \sum_{n=-\infty}^{-1} a^{-n} \cdot z^{-n}+\sum_{n=0}^{\infty} a^{n} \cdot z^{-n} \quad\left[\because|n|=\left\{\begin{array}{cc}
-n, & (-\infty, \\
n, & (0,1) \\
n, & \infty
\end{array}\right]\right. \\
& \quad=\sum_{n=1}^{\infty} a^{n} \cdot z^{n}+\sum_{n=0}^{\infty}\left(\frac{a}{z}\right)^{n}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& z F(z)-z f(0)-F(z)=\sum_{n=0}^{\infty}[f(n T+T)-f(n T)] z^{-n} \\
& (z-1) F(z)-z f(0)=\sum_{n=0}^{\infty}[f(n T+T)-f(n T)] z^{-n} \\
& \lim _{z \rightarrow 1}\{(z-1) F(z)-z f(0)\}=\lim _{z \rightarrow 1} \sum_{n=0}^{\infty}[f(n T+T)-f(n T)] z^{-n} \\
& \lim _{z \rightarrow 1}(z-1) F(z)-f(0)=\sum_{n=0}^{\infty}[f(n T+T)-f(n T)] \\
& =\lim _{n \rightarrow \infty}[f(T)-f(0) \\
& +f(2 T)-f(T) \\
& +f(3 T)-f(2 T) \\
& +. ~ \\
& +f(n T)-f((n-1) T)] \\
& =\lim _{n \rightarrow \infty}[f(n T)-f(0)] \\
& =f(\infty)-f(0)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[a z+(a z)^{2}+(a z)^{3}+\ldots . .\right]+\left[1+\left(\frac{a}{z}\right)+\left(\frac{a}{z}\right)^{2}+\ldots \ldots\right] \\
& =a z\left[1+a z+(a z)^{2}+\ldots . .\right]+\left[1+\left(\frac{a}{z}\right)+\left(\frac{a}{z}\right)^{2}+\ldots \ldots .\right] \\
& =a z(1-a z)^{-1}+\left(1-\frac{a}{z}\right)^{-1} \quad\left\{\because 1+x+x^{2}+\ldots \ldots=(1-x)^{-1}\right\} \\
& =\frac{a z}{1-a z}+\frac{z}{z-a} \\
& =\frac{a z(z-a)+z(1-a z)}{(1-a z)(z-a)} \\
& =\frac{z\left(1-a^{2}\right)}{(1-a z)(z-a)}
\end{aligned}
$$

8. Find $Z^{-1}\left[\frac{Z^{2}-3 Z}{(Z-5)(Z+2)}\right]$. [CO 5-H2]

$$
\begin{aligned}
& \text { Let } \mathrm{F}(Z)=\frac{Z^{2}-3 Z}{(Z-5)(Z+2)} \\
& \frac{F(Z)}{Z}=\frac{Z-3}{(Z-5)(Z+2} \\
& \frac{Z-3}{(Z-5)(Z+2}=\frac{A}{Z-5}+\frac{B}{Z+2} \\
& Z-3=\quad \mathrm{A}(Z+2)+\mathrm{B}(Z-5)
\end{aligned}
$$

Put $Z=5$,

$$
\text { Put } Z=-2
$$

$$
7 \mathrm{~A}=2 \quad-7 \mathrm{~B}=-5
$$

$$
\longmapsto A=\frac{2}{7} \quad \longleftrightarrow B=\frac{5}{7}
$$

$$
\begin{aligned}
& \frac{F(Z)}{Z}=\frac{2}{7} \frac{1}{Z-5}+\frac{5}{7}+\frac{1}{Z+2} \\
& \frac{F(Z)}{Z}=\frac{2}{7} \quad \frac{Z}{Z-5}+\frac{5}{7}+\frac{Z}{Z+2}
\end{aligned}
$$

$$
\mathrm{Z}^{-1}[F(Z)]=\frac{2}{7} \quad \mathrm{Z}^{-1}\left[\frac{Z}{Z-5}\right]+\frac{5}{7} \mathrm{Z}^{-1} \quad\left[\frac{Z}{Z+2}\right]
$$

$$
Z^{-1}\left[\frac{Z^{2}-3 Z}{(Z-5)(Z+2)}\right]=\frac{2}{7} 5^{n}+\frac{5}{7}(-2)^{n}, n \geq 0
$$

9. Find $Z^{-1}\left[\frac{z^{2}}{Z^{2}+4}\right]$. [CO5-H2]

$$
\begin{aligned}
& \text { Let } \quad \mathrm{F}(\mathrm{z})=\frac{Z^{2}}{Z^{2}+4}, Z^{-1}[F(Z)]=\mathrm{f}(\mathrm{n}) \\
& \\
& Z^{n-1} F(z)=\frac{Z^{n+1}}{Z^{2}+4}
\end{aligned}
$$

The poles are $Z=2 i, Z=-2 i$ (simple poles)

$$
\begin{aligned}
\text { Res }\left\{Z^{n-1} F(Z)\right\}_{Z=2 i} & =Z \rightarrow 2 i \quad,(Z-2 \mathrm{i}) \frac{Z^{n+1}}{(Z+2 \mathrm{i})(Z-2 \mathrm{i})} \\
& =\frac{(2 \mathrm{i})^{n+1}}{4 i}=\frac{2 \mathrm{i}^{n}}{2}=2^{n-1}(i)^{n} \\
\text { Res }\left\{Z^{n-1} F(Z)\right\}_{Z=2 i} & =Z \rightarrow-2 i \quad,(Z \not \subset 2 \mathrm{i}) \frac{Z^{n+1}}{(Z+2 \mathrm{i})(Z-2 \mathrm{i})} \\
& =\frac{(-2 \mathrm{i})^{n+1}}{-4 i}=\frac{(-2 i)(-2 i)^{n}}{-4 i} \\
& =\frac{1}{2} 2^{n}(-i)^{n}=2^{n-1}(-i)^{n}
\end{aligned}
$$

$f(n)$ sum of the residue of $Z^{n-1} \mathrm{~F}(Z)$ at its poles

$$
\begin{aligned}
& =2^{n-1} i^{n}+2^{n-1}(-i)^{n} \\
& =2^{n-1}\left[\cos \frac{n \pi}{2}+i \sin \frac{n \pi}{2}+\cos \frac{n \pi}{2}-i \sin \frac{n \pi}{2}\right] \\
& =2^{n} \cos \frac{n \pi}{2} \quad\left[\because(i)^{n}=\cos \frac{n \pi}{2}+i \sin \frac{n \pi}{2}\right] \\
f(n) & =2^{n} \cos \frac{n \pi}{2} \quad\left[\therefore(-i)^{n}=\cos \frac{n \pi}{2}-i \sin \frac{n \pi}{2}\right]
\end{aligned}
$$

